機能性 RNA の産業応用へ向けての
基盤研究のための調査研究
報 告 書

平成 17 年 3 月

財団法人 機械システム振興協会
委託先 社団法人 バイオ産業情報化コンソーシアム
この事業は、競輪の補助金を受けて実施したものです。
序

わが国経済の安定成長への推進にあたり、機械情報産業をめぐる経済的、社会的諸条件は急速な変化を見せており、社会生活における環境、防災、都市、住宅、福祉、教育等、直面する問題の解決を図るためには、技術開発力の強化に加えて、ますます多様化、高度化する社会的ニーズに適応する機械情報システムの研究開発が必要であります。

このような社会情勢に対応し、各方面の要請に応えるため、財団法人 機械システム振興協会では、日本自転車振興会から機械工業振興資金の交付を受けて、経済産業省のご指導のもとに、機械システムの開発等に関する補助事業、新機械システム普及促進補助事業等を実施しております。

特に、システム開発に関する事業を効果的に推進するためには、国内外における先端技術、あるいはシステム統合化技術に関する調査研究を先行して実施する必要がありますので、当協会に総合システム調査開発委員会（委員長 放送大学 副学長 中島尚正氏）を設置し、同委員会のご指導のもとにシステム技術開発に関する調査研究事業を民間の調査機関等の協力を得て実施しております。

この「機能性 ... 的産業応用へ向けての基盤研究のための調査研究報告書」は、上記事業の一環として、当協会が社団法人バイオ産業情報化コソーシアムに委託して実施した調査研究の成果であります。

今後、機械情報産業に関する諸施策が展開されていくうえで、本調査研究の成果が一つの礎石として役立てば幸いであります。

平成17年3月

財団法人機械システム振興協会
はじめに

ヒトゲノム配列の精密化が完了し、タンパク質遺伝子の総数が約22,000個と見積もりられた。この数は従来の予測数である30,000-35,000個を大幅に下回る結果であり、ショジュウバエ（20,000個）や線虫（19,000個）の遺伝子数と大きな差がないという衝撃の事実であった。それでは、何が生命の複雑さをもたらしているのであろうか？哺乳動物は他の脊椎動物よりもさらに複雑な行動ができるし、穢長類他の哺乳類よりも高度な思考回路を有しているのは疑いのない事実である。したがって、個々のタンパク質の機能やそのネットワークを理解するだけでは、ヒトが持つ複雑な感情や創造力など高度な脳機能を説明することは、もはや不可能である。ヒトゲノム解析のもう一つの成果として特筆すべきは、ヒトゲノムの98%にも及ぶタンパク質をコードしないnon-codingな領域から大量の転写産物が見つかったことである。実際にこれらの領域の2/3からRNAが転写されていることが判明している。これらのnon-coding RNA（ncRNA）は、タンパク質に翻訳されることなく存在し、機能性RNAとして振舞うことが、最近の研究所明らかになりつつある。生命の複雑さとゲノムに存在するnon-coding領域の増加には明確な相関が見られ、高度な生命現象の源はncRNAが担っている可能性が指摘されている。

マイクロRNA（miRNA）は、ncRNAの中で最も解析が進んでいる機能性RNAである。miRNAは特定のmRNAの3'非翻訳領域に相補的に結合し、mRNAの翻訳制御と分解を誘導し、発生のタイミングや分化の方向性を決定する分子として注目されている。最近の研究によれば、ヒトにはmiRNAが1,000個程度存在し、そのそれぞれが、複数の遺伝子の翻訳抑制に関与していることが明らかとなり、特にヒトのタンパク質遺伝子の30%にあたり5,300個の遺伝子が、これらのmiRNAによって制御されているとの見解も出されている。また、核内に存在するncRNAがDNAのメチル化やクロマチン修飾に関与する例が報告されている。このように、ncRNAは遺伝子発現において翻訳制御のみならず、転写レベルでの制御にも積極的に関与していることが明らかとなり、DNA→RNA→タンパクという古典的なシートラルゲノムが大きく歪み替えられようとしている。RNA研究は今や、次世代の生命科学におけるパラダイムの形成に根幹的な役割を担いつつある。

大量のncRNAの中には未知の機能性RNAが眠っている。複雑な生命活動を分子レベルで理解するためには、これら新規な機能性RNAの探索とその解析が重要な鍵を握っているはずである。機能性RNAの研究は、医薬、再生工学、診断など、生命科学をとりまくあらゆる産業応用が期待される。本調査研究は、世界的なRNA研究の現状を理解し、日本の機能性RNA研究の進むべき方向性を明確にするために行われたものである。本調査研究にご尽力をいただいた、機能性RNA調査委員会とワーキンググループのメンバー及び関係諸氏に感謝申し上げたい。

平成17年3月

社団法人バイオ産業情報化コンソーシアム
目次

序
はじめに
1. 調査の目的 ... 1
2. 調査の体制 ... 2
3. 機能性 RNA 研究の潮流 .. 6
 3.1 生命現象研究の流れ ... 9
 3.2 トランスクリプトーム解析（Transcriptome） .. 12
 3.3 プロテオーム解析（Proteome） ... 14
 3.4 細胞内全代謝物解析（Metaborome） ... 17
 3.5 機能性 RNA 研究の現状 .. 19
 3.5.1 RNAi とは ... 20
 3.5.2 RNAi のメカニズム ... 20
 3.5.3 機能性 RNA 応用のための基本技術 ... 21
 3.5.3.1 設計 .. 21
 3.5.3.2 合成 .. 22
 3.5.3.3 投与方法 .. 23
 3.5.4 各種応用への試み .. 24
 3.5.4.1 基礎研究分野への応用 ... 25
 3.5.4.2 医薬分野への応用 .. 25
 4. RNA 機能研究に関する技術・研究動向 .. 28
 4.1 機能性 RNA 探索技術 ... 28
 4.1.1 精製技術 ... 28
 4.1.1.1 粗精製 .. 28
 4.1.1.2 分離精製 .. 30
 4.1.1.3 現状の分離精製における課題 ... 32
 4.1.2 ラベルリング技術（主にはマイクロアレイでの検出用） 32
 4.1.2.1 酵素法による色素修飾 .. 33
 4.1.2.2 化学修飾法による色素修飾 ... 33
 4.1.2.3 酵素的付加法 .. 34
 4.1.2.4 機能性 RNA への色素標識技術の課題 36
 4.1.3 機能性 RNA の検出方法 .. 36
 4.1.3.1 ハイプリダイゼーション法以外の検出法 36
 4.1.3.2 ターゲット遺伝子の実験的解析法 .. 36
4.2 バイオインフォマティクス支援ツール .. 38
 4.2.1 機能性 RNA 遺伝子発見 .. 38
 4.2.2 ncRNA 発見の困難な点 .. 38
 4.2.3 ncRNA 発見手法の分類 .. 38
 4.2.4 既存ツールの詳細 .. 39
 4.2.4.1 PSTAGs .. 40
 4.2.4.2 Scarna .. 42
 4.2.4.3 SOKOS ... 42
 4.2.4.4 Plan A に基づくツール .. 43
 4.2.4.5 Plan B に基づくツール .. 44
 4.2.4.6 Plan C に基づくツール .. 45
 4.2.5 機能性 RNA に関するデータベース .. 48

4.3 解析ツール .. 56
 4.3.1 ハイブリダイゼーションによる探索・検出 .. 56
 4.3.2 シークエンスによる探索・検出 .. 58
 4.3.3 マススペクトロメトリーを用いた探索・検出 ... 61
 4.3.4 リアルタイム定量 PCR による検出 ... 62
 4.3.5 Invader 法による検出 .. 63
 4.3.6 Ribozyme を用いた検出 .. 64

4.4 RNA 合成技術 .. 65
 4.4.1 核酸合成概論 .. 65
 4.4.2 RNA 合成法 .. 66
 4.4.3 修飾 RNA 鎖の合成 ... 71
 4.4.4 RNA の商業生産 ... 72

5. 注目すべき RNA 機能研究に関する技術・研究動向 .. 77
 5.1 機能性 RNA 探索技術 .. 77
 5.1.1 Affymetrix 社 ... 77
 5.1.1.1 エキソン、あるいはスプライシングの境界配列に特化したマイクロアレイについて ... 77
 5.1.1.2 Tiling Array の解析方法について ... 79
 5.2 バイオインフォマティクス支援ツール .. 82
 5.2.1 microRNA (miRNA)のターゲット予測 .. 82
 5.2.1.1 Miranda (http://www.microrna.org) .. 82
 5.2.2 microRNA (miRNA)の予測 .. 85

5.3 解析ツール .. 88
 5.3.1 最新のマイクロアレイ関連技術 ... 88
7.5 ドイツ・官民コンソーシアムによるバイオインダストリー振興策
7.5.1 RNAnetwork の概要
7.5.2 RNAnetwork の代表的な参加者
7.5.2.1 Erdmann, Professor of Freie Univeritat (Free University), Berlin
7.5.2.2 RiNA Gmbh/RNAnetwork
7.5.2.3 Charite (University hospital)
7.5.2.4 Biotop, Berlin-Brandenbrug
7.5.2.5 Noxxon Pharma AG
7.5.2.6 Atugen
7.5.2.7 Lehrach, Max-Planck-Institute, Moleculare Genetik
8. ncRNA 検出技術のフィージビリティスタディ
8.1 検出技術・方式
8.1.1 フィージビリティスタディの概要
8.1.2 ターゲット RNA の選択と検出用合成オリゴプローブ設計
8.2 試作と結果
8.2.1 モデル実験用合成オリゴ RNA 配列
8.2.2 モデル実験結果
8.2.3 ヒト培養細胞からの miRNA 検出
8.3 マイクロアレイ技術の可能性
9. 調査研究の今後の課題及び展開
9.1 今後の課題
9.2 今後の展開
9.2.1 戦略的な方針の立案・実施のための環境整備
9.2.2 解析ツールについて日本が優位な分野の活用
9.2.3 バイオテクノロジーについて日本が優位な分野の活用
9.2.4 バイオインフォマティクスについて日本が優位な分野の活用

※ 企業名、団体名等は略称で記述してあるものもあります。
※ 研究員は所属企業・団体名で記述してあるものもあります。
1. 調査の目的

バイオテクノロジーは、生物機能の解明及び利用により、健康や環境分野での技術開発をブレークスルーし、副作用の少ない治療法や画期的な新薬の開発、高機能食品、環境負荷の少ない生産プロセス等を開発することで、豊かな高齢化社会および循環型経済社会を実現するための基盤技術である。

その中で機能性RNAは、発生分化などの重要な生命現象に関与していると考えられており、再生医療やRNA医薬等への実用化にもつながることが期待されていることから世界的注目を集めており、今後急速な研究の展開が見込まれている。しかしながら、わが国にはRNAを専門とする有力な研究者が揃っているものの、機能性RNAを網羅的に解析する技術は世界的に見ても現状では確立されていない。

このため、本調査研究では、従来のバイオ分野における研究等に関連する技術の中から機能性RNAの観測・研究技術に応用可能と考えられる技術を抽出し、機能性RNAの基盤研究とこれに必要な解析機器・ツールの実用化、産業化を目指す応用のための技術課題、設計技術等各ステップにおける問題点を明確にした上で、次にその解決策を検討して応用研究の方向性を策定し、機能性RNAの産業応用へ向けた基盤研究の確立に資する。
2. 調査の体制

本事業を進めるにあたり、「調査委員会」を設置し、本調査研究への指導、助言を行うものとする。また、同コンソーシアム内に調査ワーキンググループを設置し、本調査研究を推進するものとする。事業の一部は専門機関に外注する。管理体制と実施体制は下図の通りである。

(1) 研究体制スキーム
社団法人バイオ産業情報化コンソーシアム（BIC）
責任者 戦略企画本部本部長 芋口 隆重

(2) 法人体制スキーム
社団法人バイオ産業情報化コンソーシアム
総合システム調査開発委員会委員名簿

（順不同・敬称略）

| 委員長 | 放送大学 |
| 副学長 |
| 委 員 | 政策研究大学院大学 |
| 政策研究科 |
| 教授 |
| 委 員 | 東京工業大学 |
| 大学院総合理工学研究科 |
| 知能システム科学専攻 |
| 教授 |
| 委 員 | 東京大学 |
| 大学院工学系研究科 |
| 助教授 |
| 委 員 | 独立行政法人産業技術総合研究所 |
| 産学官連携部門 |
| コーディネータ |
| 委 員 | 独立行政法人産業技術総合研究所 |
| 産学官連携部門 |
| シニアリサーチャー |
調査委員会委員一覧（敬称略）

【委員長】 渡辺 公綱 独立行政法人産業技術総合研究所 生物情報解析研究センター センター長

学識経験者委員・氏名 50音順

委員 浅井 潔 東京大学 大学院新領域創成科学研究科 情報生命科学専攻 教授

委員 鈴木 勉 東京大学大学院 工学系研究科 科学生命工学専攻 助教授

委員 辻本 豪三 京都大学 大学院薬学研究科 ゲノム創薬分野 教授

企業委員・氏名

委員 江口 至洋 三井情報開発株式会社 常務取締役

委員 松原 謙一 株式会社 DNA チップ研究所 代表取締役社長

【事務局】

片桐 俊幸 社団法人バイオ産業情報化コンソーシアム 戦略企画本部担当部長
調査ワーキンググループ主担当者一覧（敬称略）

グループリーダー　　牧野 徹　　株式会社ノバジーン　代表取締役社長

以下氏名 50 音順
　秋山 英雄　　東レ株式会社先端融合研究所　主任研究員
　大沢 直騎　　株式会社ノバジーン情報技術部　研究員
　品口 隆重　　社団法人バイオ産業情報化コンソーシアム　戦略企画本部　本部長
　片桐 俊幸　　社団法人バイオ産業情報化コンソーシアム　戦略企画本部　担当部長
　佐藤 仁彦　　タカラバイオ株式会社 DNA 機能解析センター　次席研究員
　溝澤 聡子　　東レ株式会社先端融合研究所　研究員
　中島 隆夫　　株式会社ノバジーン情報技術部　研究員
　信正 均　　東レ株式会社先端融合研究所　主任研究員
　堀 邦夫　　株式会社ノバジーン研究開発部　課長
　村田 成範　　DNA チップ研究所研究開発グループ
　Lim Chun Ren　　DNA チップ研究所研究開発グループ　マネージャー
　吉川 良恵　　タカラバイオ株式会社 DNA 機能解析センター　主任研究員
3. 機能性 RNA 研究の潮流

機能性高分子の主役はタンパク質であり、RNA は単なる情報の伝達物質であると見られがちであるが、RNA 干渉やマイクロ RNA の発見によって、タンパク質をコードしない RNA （non-coding RNA = ncRNA）が担う新しい機能が注目されている。ncRNA はそれ自身が遺伝子の最終産物であり、これらが機能性高分子として振舞い、遺伝子の発現調節から、発生や分化など高次生命現象に関わる重要な働きを担っていることが次第に明らかになりつつある。また、最近 ncRNA の異常が疾患の原因になっているという例が報告されつつあり、疾患の原因としてタンパク質の異常のみならず機能性 RNA の異常も視野に入れる必要がある。これらの機能性 RNA は、転写後に生じる様々な修飾やスプライシングなどのプロセッシングにより、本来の機能を獲得することが知られ、RNA の機能を正しく理解するためには、RNA を情報として捉える従来型の解析方法では不十分であり、RNA 分子を情報として捉える新しい方法論の確立と、機能性 RNA をゲノムワイドに解析する方法論が期待されている。

本調査研究で扱う機能性 RNA とは、

- 細胞内で機能をもつ polyA テールをもたない RNA と定義。non-coding RNA (ncRNA) とも呼ばれる。
- アミノ酸配列をコーディングしていない短い RNA でタンパク質をコードすることができるほどの長い連続読み枠を持たない。機能性 RNA の代表例としてよく知られている tRNA は、65〜110 塩基の低分子 RNA で、分子は平面構造で書くとクローバー葉をなすが、立体的には L 字型の三次構造をとる。図 3.1 参照。

と定義している。現在その存在が確認されている機能性 RNA を表 3.1 にまとめた。これら機能性 RNA 群の機能は未だ否定の域を出ないものや、これら以外の機能性 RNA が存在する可能性もある。現在は、産業応用可能であるとされている siRNA が注目されている。特に RNA 医薬の本命とされている RNAi 技術に関連する分野が世界的な競争状態となっているが、わが国の当該分野の位置づけは、芳しいものではない。それについては、本報告書第 6 章にある特許出願状況からも明白である。しかしながら、機能性 RNA 群の機能が未知であったり、新たな機能性 RNA の発見などが考えられる。また、次章以降でも述べられているようにトランスクリプトーム解析、プロテオーム解析ならびにメタポローム解析などと関連付けながら総合的な視点に立脚した解析が必要な分野でもあり、その研究・開発は絶対に言うべきであると言える。
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Full name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>fRNA</td>
<td>functional RNA</td>
<td>Non-coding RNAと同義語</td>
</tr>
<tr>
<td>miRNA</td>
<td>micro RNA</td>
<td>翻訳調節遺伝子群に係わる</td>
</tr>
<tr>
<td>ncRNA</td>
<td>non-coding RNA</td>
<td>mRNA以外のRNA</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal RNA</td>
<td>リポソームの主要構成成分</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
<td>RNA干渉に係わる活性化分子</td>
</tr>
<tr>
<td>snRNA</td>
<td>small nuclear RNA</td>
<td>核内に局在する低分子RNA</td>
</tr>
<tr>
<td>smRNA</td>
<td>small non-mRNA</td>
<td>低分子のncRNAと同じ</td>
</tr>
<tr>
<td>snoRNA</td>
<td>small nucleolar RNA</td>
<td>核小体に局在する低分子RNA</td>
</tr>
<tr>
<td>stRNA</td>
<td>small temporal RNA</td>
<td>低分子の遺伝子発現調節RNA</td>
</tr>
<tr>
<td>tRNA</td>
<td>transfer RNA</td>
<td>コドンをアミノ酸に対応付けさせるアダプター分子</td>
</tr>
<tr>
<td>hnRNA</td>
<td>heterogenous nuclear RNA</td>
<td>mRNAの前駆体として核に存し、一部がスプライシング過程を経てmRNAになる</td>
</tr>
</tbody>
</table>

表3.1 機能性RNAの種類と機能

図3.1 tRNAの2次構造
本調査研究では、図 3.2 に示されるような所謂セントラルドマに沿った視点で機能性 RNA 研究を俯瞰するとともに、現状有望視されている産業化への出口についても考察する。
3.1 生命現象研究の流れ

生命科学は、生命現象の素過程とその連携機構を研究し、これに基づいて生命の普遍性と多様性、生命体の協調性と競合性、ならびに生命の起源と進化などを解明することを目的としている。20世紀における生命科学の最大の発見は、生物を形作り、生命体であり続けるための情報ゲノムにコードされているという知見であり、生命活動はゲノム情報によって産生された核酸やタンパク質が担っていると言う新たな認識が、人類全体で共有できるようになった。そして、国際ヒトゲノム計画の達成に伴い、塩基配列等のゲノム構造に関わる基盤的データが体系的に蓄積整備されつつあるなかで、ゲノム研究は本格的に機能解析の時代へと突入している。現在130種以上の生物種でゲノム情報の全貌が明らかになってきており、ゲノム情報の発現制御機構、遺伝子産物の構造と機能の研究などの学問領域において、新しい学問分野が誕生して急成長を遂げようとしている。

一方、ヒトを対象とした世界各国の機能解析の成果は、遺伝子の発現調節機能やタンパク質等の生体分子間相互作用の網羅的な解析に基づき、生命活動を成立させているネットワークを明らかにすることを目的とする研究を促進している。具体的には、遺伝子発現調節領域等のヒトゲノムの機能解析、タンパク質-タンパク質相互作用の解明等といった、生体分子間相互作用について基礎データの網羅的創出を行い、創出された情報を活用することによって、発生・分化等の生命科学に関する基本的問題の解明の基盤を構築するとともに、疾患の発症機構の解明や新しい治療法の開発につながる成果をあげることを目指している。

従来の遺伝子やタンパク質単体の配列・構造解析に加えて、転写されたmRNA量を包括的に測定するトランスクリプトーム解析、遺伝子産物として発現しているタンパク質全てをターゲットとするプロテオーム解析、細胞内に存在する代謝産物を一挙に測定するメタポローム解析のように、生体分子を「網羅的に」測定・解析する-omicテクノロジーによるアプローチの有効性が明らかになってきた。Yale大学のGerstein研究室では、-omeという接尾辞を持つ数十の用語に関するテーブルである"OME TABLE"を公開している(http://bioinfo.mbb.yale.edu/what-is-it/omes/)。

これら網羅的測定・解析というアプローチを支えているのは、情報工学の立場から生物学的課題の解決を試みる、バイオインフォマティクスと呼ばれる分野である。バイオインフォマティクスは、古典的には遺伝子配列や生化学反応の解析手法の研究開発を出発点として、大規模実験を管理および推進する情報技術基盤の開発、遺伝子構造や機能予測、タンパク質構造解析、トランスクリプトームあるいはプロテオームにおける相関解析、あるいは因果推定、生体内ネットワークの定性的・定量的解析の理論研究へと広がりを見せている。バイオインフォマティクスの各分野と生物情報の流れとの関係を図3.3にまとめた。
図 3.3 バイオインフォマティクスの各分野と生物情報の流れとの関係

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
<th>First Year In Pubmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome</td>
<td>The full complement of genetic information both coding and non-coding in the organism</td>
<td>1932</td>
</tr>
<tr>
<td>Proteome</td>
<td>The protein-coding regions of the genome</td>
<td>1995</td>
</tr>
<tr>
<td>Transcriptome</td>
<td>The population of mRNA transcripts in the cell, weighted by their expression levels</td>
<td>1997</td>
</tr>
<tr>
<td>Physiome</td>
<td>Quantitative description of the physiological dynamics or functions of the whole organism</td>
<td>1997</td>
</tr>
<tr>
<td>Metabolome</td>
<td>The quantitative complement of all the small molecules present in a cell in a specific physiological state</td>
<td>1998</td>
</tr>
<tr>
<td>Phenome</td>
<td>Qualitative identification of the form and function derived from genes, but lacking a quantitative, integrative definition</td>
<td>1995</td>
</tr>
<tr>
<td>Morphome</td>
<td>The quantitative description of anatomical structure, biochemical and chemical composition of an intact</td>
<td>1996</td>
</tr>
<tr>
<td>OME Type</td>
<td>Description</td>
<td>Year</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Interactome</td>
<td>List of interactions between all macromolecules in a cell</td>
<td>1999</td>
</tr>
<tr>
<td>Glycome</td>
<td>The population of carbohydrate molecules in the cell</td>
<td>1999</td>
</tr>
<tr>
<td>Secretome</td>
<td>The population of gene products that are secreted from the cell</td>
<td>2000</td>
</tr>
<tr>
<td>Translatome</td>
<td>The population of mRNA transcripts in the cell, weighted by their expression levels</td>
<td>2001</td>
</tr>
<tr>
<td>Fluxome</td>
<td>The population of proteins weighted by their fluxes</td>
<td>1999</td>
</tr>
<tr>
<td>Localizome</td>
<td>The localization of various proteins, both in terms of cell type and subcellular compartments</td>
<td></td>
</tr>
<tr>
<td>Pseudome</td>
<td>The population of pseudogenes in the cell</td>
<td></td>
</tr>
<tr>
<td>Ribonome</td>
<td>The population of RNA-coding regions of the genome</td>
<td></td>
</tr>
<tr>
<td>Orfeome</td>
<td>The sum total of open reading frames in the genome, without regard to whether or not they code; a subset of this is the proteome</td>
<td></td>
</tr>
<tr>
<td>Regulome</td>
<td>Genome-wide regulatory network of the cell</td>
<td></td>
</tr>
<tr>
<td>Cellome</td>
<td>The entire complement of molecules and their interactions within a cell</td>
<td></td>
</tr>
<tr>
<td>Operome</td>
<td>The characterization of proteins with unkown biological function</td>
<td></td>
</tr>
<tr>
<td>Transportome</td>
<td>The population of the gene products that are transported; this includes the secretome</td>
<td></td>
</tr>
<tr>
<td>Functome</td>
<td>The population of gene products classified by their functions</td>
<td></td>
</tr>
<tr>
<td>Foldome</td>
<td>The population of gene products classified by their tertiary structure</td>
<td></td>
</tr>
<tr>
<td>unknowme</td>
<td>Genes of unkown function</td>
<td></td>
</tr>
</tbody>
</table>

表 3.2 OME TABLE (Gerstein Lab作成資料を引用)
3.2 トランスクリプトーム解析（Transcriptome）

個々の生体分子の解析を行うこれまでの研究から、遺伝子発現の全体像を捕らえ、その結果から遺伝子発現の調節、生物機能を解明することを目的としたトランスクリプトーム解析が盛んになってきている。遺伝子の転写産物である mRNA の発現量を測定する従来法としては、ノーザンブロット法、SAGE、ディファレンシャル・ディスプレイ法が開発されてきた。これらの方法は一線を画する形、即ち g オーダーの少量の試料に対して、数千〜数万遺伝子の発現挙動の計測を可能にしたのが、マイクロアレイあるいは DNA チップである。解析にあたっては、発現の挙動が似ている遺伝子ごとにクラスタリングを行う方法や、健常者と病気の発現を比較し病気の原因遺伝子を採る方法、発現の状態から病気の診断を行う方法などがある。クラスタリングは主成分分析といった多変量解析法や階層的クラスタリング、病気の診断には判別分析やサポートベクターマシンなどが用いられる。また、上記配列解析の手法を用いて類似の発現パターンを示す遺伝子同士で共通に存在する転写制御領域の抽出の手法も存在する。クラスタリングによる遺伝子のグループ化は必ずしも遺伝子発現に関して形成されているネットワークの姿を直接的に反映するものではないため、近年では遺伝子ネットワークを推定しようとする試みがさかんに行われている。

図 3.4 では、実験計画の下細胞・組織等からの RNA 抽出を経て mRNA の逆転写反応と共に蛻光標識が行われる。蛻光標識済み試料は DNA マイクロアレイに添加し最適化された条件下で 1 対夜程度の反応を行う。反応後 DNA マイクロアレイリーダーにより蛻光画像が取得される。いわゆるバイオインフォマティクス技術により、階層的クラスタリングなどの解析を経て遺伝子発現に関して形成されていると推定されるネットワーク解析が必要に応じて行われる。一連の解析結果と生物的意味合いを判断して解析のサイクルが回る。

トランスクリプトーム解析では、従来型の解析に比べて大量の発現データを取得できるが、解析結果と想定される生物学的意味が必ずしも一致するわけではない。発現解析ツールの発達も必須であるが、プロテオーム解析などから得られる情報とのリンクージも重要である。トランスクリプトーム解析もこれからの課題を多く抱えていることは言うまでもない。
実験操作

クラスタリング解析

ネットワーク解析

図 3.4
3.3 プロテオーム解析（Proteome）

ヒトゲノムの配列の解読がほぼ終了し、今後の研究の興味はゲノムから得られる情報を使い、それぞれの意味を知ることにかわりつつある。プロテオーム（proteome）は、細胞や組織において発現しているタンパク質の全体像を指す。DNAに書き込まれた情報はRNAを介してタンパク質へ翻訳される。近年、DNAチップ技術の向上により、RNAの発現を網羅的に解析するトランスクリプトーム解析が盛んに行われている。このRNAの発現プロファイルとタンパク質の発現プロファイルは必ずしも一致するわけではない、その相関は50%以下であるとも言われている。そこで、RNAの網羅的解析に加え、タンパク質の網羅的解析、すなわちプロテオーム解析を行うことも重要である。プロテオーム解析は、生命現象に直接影響を及ぼすタンパク質を直接見ているという点ではすぐれているが、DNAやRNAは増幅することが可能であるのに対しタンパク質は増幅する技術が確立されていないため、現時点ではその感受度の低さが欠点となっている。

具体的には、プロテオーム解析は(1)タンパク質の分離、(2)タンパク質の同定の2つの作業からなる。現在、もっぱら行われているのは二次元電気泳動によってタンパク質を分離し、質量分析で目的のタンパク質を同定する方法である。二次元電気泳動により分離したタンパク質を飛行時間型質量分析装置によって同定する。質量分析はエドマン分解を用いたタンパク質の一次配列の決定に比べやや精度は劣るが、その感受度の高さは有用である。実際はタンパク質を直接質量分析行うのではなく、目的のタンパク質を消化酵素でペプチドに消化し、いくつかのペプチドの質量パターンからタンパク質を同定するといったpeptide mass-finger printing(PMF)法が行われる。質量分析には液体クロマトグラフィーと一体となったLC-MSとタンパク質の質量と飛行時間の関係を利用したTOF-MSがある。TOF-MSの方が簡便でかつ感受度が高い。LC-MSは、MS/MSといったタンデム型の質量分析計への応用が実用化されており、一次構造まで決定できるといった特徴がある。

図3.5は微量サンプルを対象にした、ナノHPLCを前段に備えたナノHPLC/MS装置である。mRNAやタンパク質の発現測定は単独で行っても解析結果には限界があり、トランスクリプトーム解析・プロテオーム解析を相互に行うことが望ましい。図3.6は東京大学大学院理学系研究科理学部生物化学専攻 生物化学講座 植森康文らが提唱している方法論を模式的に図示している。

プロテオーム解析の新しい流れとして、東京大学大学院総合文化研究科広域科学専攻生命環境系 村田昌之らはセミインタクトセルによるプロテオーム解析を提唱している。

上皮細胞などの膜表面をセミインタクト化することにより細胞をあたかも試験管のごとく利用しようとする試みである。研究対象としては、ES細胞（Embryonic Stem Cell、胚幹細胞）や分化誘導した細胞を用い、分化に伴う様々なタンパク質・遺伝子のダイナミクスの可視化とその制御機構の解明に取り組んでいる。例えば、脂肪細胞や心筋やレンズ細胞の分化に伴う様々なオルガネラ・細胞骨格の構造変化を、特定の遺伝子の転写・翻訳・
輸送・分解とあわせて可視化し、セミインタクト細胞系を駆使し分化の過程で生起する様々な細胞内現象の再構成を目指している。この可視化解析法と遺伝子発現変動解析（DNAアレイ解析）やタンパク質発現変動解析（DIGE等）データを駆使することによって、その制御因子と制御機構を解析している。先に述べた解析とは異なり、蛍光分子イメージング法によって機能解析を行う新規な解析手法である。このような取り組みも含めて、プロテオーム解析の手法論は今後も進化するものと考えられる。

図 3.5 ナノHPLC/MSを用いたプロテオーム解析の流れ（日立論評より引用）
分子生物学・生化学研究の模式図

DNAマイクロアレイ解析

図 3.6 トランスクリプトーム、プロテオーム解析の方法論
3.4 細胞内全代謝物解析（Metabolome）

現在、ポストゲノムシークエンス、又はゲノム創薬にむけてのホモロジー解析を中心としたゲノミクス研究や、X 線、NMR 等の構造生物学関連の構造ブロテオーム研究が進んでいる。一方で、今後、機能に関連したミクロスケールのブロテオーム研究により、種々の状況でのタンパク質の量的変動や翻訳後修飾等の質的変動に関する情報が得られ、タンパク質相互のレンジベース解析が進み、その生理的役割に関連する様々な情報を得ることが可能になってくると思われる。しかしながら、具体的なタンパク質の機能解析という点では、酵素タンパク質の基質や、生成物、またレセプタータンパク質のリガンド、タンパク質の制御因子等の、個々の生理的現象に関与するタンパク質以外の細胞内低分子の量的、質的変動に対する、網羅的ならびに特異的解析が必要となる。これらの代謝分子の総体はメタボローム（Metabolome）とも呼ばれ、これを目標とする学問分野はメタボロミクスと呼ばれているようになっている。

メタボローム（またはメタボロミクス）という分野が盛んになった理由は、質量分析器の急激な性能向上にある。いまだに高価格であるが、0.1 ミリマス（炭素 12 を 12 マスユニットと系換算）の位置で測定ができるよう装置が容易に入手できる。物質の同定はプロファイリング（profiling）と呼ばれ、検出された質量ピークと近い値になる組成式を計算機で選び出す作業にあたる。

メタボローム研究は対象とする化合物の構造や機能、同定法が既によく知られている点で、他のオーム研究とは異なっている。ゲノムやトランスクリプトームの網羅的解析では、大量データの取得や自動分類（クラスタリング）を成果として発表できた。これは研究対象が機能未知の要素を含むからこそ認められる逸げ道でもある。つまり機能が未知の場合、同じクラスに分類された対象を機能上関連する（だろう）と言ってしまう。メタボロームの世界ではこの手が通用しない。代謝物を同定するだけでもヒントようだが、同定された代謝物の関係が代謝マップにより示される以上、同定結果を代謝経路からして解析せねばならない。分類だけでは結果が出せないことは、バイオインフォマティクスの力が実に現れる分野だともいえる。メタボロームで特に注目される解析ツールはデータベース、シミュレーション、そして反応モデルといった分野である。

国内では、慶応義塾大学環境情報学部先端生命科学研究所 曽我朋義らのグループがキャビラリ－電気泳動-質量分析計（CE-MS）によるメタボローム分析法を世界に先駆けて開発した。図 3.7 参照。

枯草菌に応用したところ、細胞内に存在する 1,692 成分の代謝物質の測定に成功している。曾我らが実施した枯草菌の胞子形成時のメタボローム解析結果を図 3.8 に示す。
図 3.7 キャビラリー電気泳動-質量分析計の構成図

図 3.8 枯草菌の胞子形成時のメタボローム解析結果（2004年先端技術大賞 HP より引用）

3.5 機能性 RNA 研究の現状

1950 年代に発見された mRNA、tRNA から RNA の研究は始まった。当初、RNA の機能は単に DNA の遺伝情報をタンパク質に伝えるための単なる仲介役としてしか認められていなかったが、mRNA のスプライシング、リポザイムの発見をきっかけとして RNA には様々な機能があることが知られるようになった。

2003 年にヒトゲノムの全配列の解読が完了し、ヒトの DNA から翻訳される RNA のうち 98%がタンパク質をコードしない RNA にノンコーディング RNA（ncRNA）であることが分かった。これらは単にタンパク質をコードしないわけではない、限られた数の遺伝情報の編集（スプライシングやエディティング）様々な種類のタンパク質を作るための働きや、生体内の様々な変化に応じてタンパク質の合成を制御する働き、時によっては外部から生存したバクテリアなどの外敵から生体を防御する働きなど様々な機能を担っていることがわかった。これらの様々な機能を持つ RNA は現在、機能性 RNA として多くの注目を集めるようになってきた。

機能性 RNA として最近注目を集めている RNA としてはリポザイム、マイクロ RNA (miRNA)、短鎖干渉 RNA (siRNA)、RNA アプタマーなどがあげられる。

リポザイムはともと DNA から翻訳された RNA の中で自分自身の情報の必要な部分のみを切り出してつなぎ合わされる機能があることが発見されることにより見出されたものである。最近はこの構造をもとにして触媒機能を持つ RNA 分子が設計されるようになってきて種々に利用されている。

マイクロ RNA は生体内で mRNA と部分的に結合し、タンパク質への翻訳を阻害するという機能を持っている。

siRNA は初めて植物（ベチュニア）の花の色を鮮やかにするとされ、色素を合成する遺伝子を植物に導入したところ花が鮮やかになるのではなく、もともと植物が持っていた遺伝子の発現を抑制してしまう、色が抜けたり白い花になってしまうことがきっかけとなって見つけられた現象、RNA 干渉 (RNAi) の直接の立役者と言える。

多くの研究者による研究の結果、この現象を哺乳類においても利用できることがわかったので、規模を拡大して植物の生産に応用するようになってきている。

RNA アプタマーのみは生体から見つかった機能性 RNA ではない。人工的に標的物質に結合するような RNA を合成したものである。これらを用いることにより標的物質の機能を阻害するという効果が得られ、今後は産業への応用も広がっていくと考えられる。

このように現在では様々な機能性 RNA が発見、研究、そして応用されている。今後は機能性 RNA の発見を契機に新しい時代に遭遇していると言える。機能性 RNA の利用はリポザイムやアンチセンスを用いた創薬などから始まり、種々の大きな壁にぶつか
3.5.1 RNAi とは

RNAi は機能阻害したい遺伝子の特定領域と相同な senseRNA とその antisenseRNA からなる 2 本鎖 RNA (siRNA)が標的遺伝子の転写産物である mRNA の相同部分を切断することにより標的遺伝子の発現を抑制するという現象である。従来用いられている方法と比べ、簡便・安価で短時間に遺伝子抑制が行うことが可能な方法であるため高く評価されている。

RNAi は 1990 年に花の色の研究がきっかけとなって見つかったものであるが、その後何年もその機構が不明であった。線虫 (C. elegans)において、ある遺伝子の配列と相同な senseRNA あるいは antisenseRNA そして、これらをハイブリダイズした 2 本鎖の RNA を投与したところ、2 本鎖の RNA のみが非常に効果的に遺伝子の発現を抑制するという報告が 1998 年の Fire らによりなされ、研究のきっかけが作られた。この後、様々な生物種にこの現象は応用されるようになるが、哺乳類においてはインターフェロン応答、そしてそれに関したアポトーシスが誘発され、細胞死が引き起こされてしまうため応用ができないことも判明した。

この問題に解決の道を開いたのは 2001 年の Tuschi らのグループである。彼らは RNA 横干涉を起こしているショウジョウバエ (Drosophila) の体内に 20 塩基程度の長さの RNA が多量に存在していたことを突き止めまた。この結果を応用ヒト培養細胞に 21 塩基対の 2 本鎖 RNA を投与することにより RNAi 現象を引き起こすことに成功した。この後は爆発的に RNAi に関連した研究、応用への試みがなされるようになった。

【引用文献】

3.5.2 RNAi のメカニズム

RNAi は長鎖、短鎖にかかわらず、細胞中に何らかの方法で 2 本鎖 RNA が導入されるとこから始まる。もちろん、生体にももっとと備わっている RNA 干渉の場合には生体内の 2
本鎖 RNA もその出発点にもなり、これは生体内の調節機構において重要な役割を果すこと
が知られている。
この 2 本鎖の RNA は Dicer と呼ばれる RNaseIII に分類される RNA 切断酵素により必要
な形にプロセッシングされる1。生成した siRNA はこの図ではわかりにくいが、RNA の 3`
末端側に 2 塩基のオーバーハング(突出)がある特異な形になっている。これが RNAi を引き
起こすために必要な形となる。
切り出された siRNA は RISC と呼ばれる RNA-ヌクレアーゼ複合体を形成する2。この
段階で 2 本鎖だった siRNA の片の方の鎖が放出され、mRNA を切断する準備ができ上がる。
RISC の表面に提示されている siRNA の片方の鎖の配列に相補的な配列を持つ mRNA は
siRNA にハイプリダイズし、siRNA の真ん中付近で RISC によって切断される。
本来タンパク質に翻訳される予定だった mRNA はこのようにして切断されることにより
タンパク質には翻訳されないことになり、結果としてこの遺伝子情報がサイレンシングさ
れたこととなる。

【引用文献】

3.5.3 機能性 RNA 応用のための基本技術
実際に機能性 RNA を応用していくにあたってどんな技術が開発され、どんな問題点があ
るのだろうか。ここでは RNAi を例にとって 3 つのステップに分けて解説する。

3.5.3.1 設計
サイレンシングを行いたい遺伝子(ターゲット)が決まると、まずはターゲットとする
mRNA のどの部分を切断する siRNA を作成するかを決める必要がある。これを設計と呼ぶ。
この設計の良し悪しによってサイレンシングの効率、副作用などが決まってくるほど重要
な部分である。
設計法ではターゲット mRNA のどの部分配列に着目して設計するのが重要な問題とな
る。特に抑制効率が選択場所によって全く異なること、他の mRNA を抑制すること、これ
を off-target 効果というが、これがない配列を選択する必要がある。
配列の選択に関しては Tuschi ら (2001) による提案をはじめとして経験的にどのあたりの
配列が効果的か選択する方法が提案されている3。
また、大量のデータを用いて導き出された阻害効果の高い設計ガイドラインが程らのグ
ループなどから提案されている4。現在もどんどん新しい設計方法が種々のグループから提

21
案されており、まだまだ研究を要する分野である。

【引用文献】

3.5.3.2 合成

DNA の化学合成と比べて RNA の化学合成はステップ数、時間、コストがかかる。更に、RNA は DNA よりもはるかに不安定で、生体内のみならず保存中にも分解がとても早く進行する。そこで機能性 RNA を実用化するにあたってはこれを如何にクリアするか、大きな問題となってくる。現在、siRNA を合成するにあたっては主として化学合成、in vitro合成、in vivo合成の 3 つの方法が採られている。それぞれに長所、短所があるが、応用方法にあわせて選択することが可能である。

RNA の化学合成では DNA と比較してステップ数、時間、コストがかかる。これは RNA の構造によるものであり、官能基が DNA よりも多く、それぞれを別々に修飾する必要があるためである。一般的な市販の全自動合成機で用いる 2'-水酸基の保護基としては TBDMS 基(t-ブチルジメチルシリル基)が多く使われているが、合成時間の短縮、収率の向上の為に TOM 基(トリンプロピルシルオキシメチル基)、ACE 基(ピス(2-アセトキシエトキシメチル基)、CEE 基(1-2-ジアノエトキシ)エチル基)などが開発されている。

化学合成の大きなメリットとして希望する化学修飾を施すことが可能だという点があげられる。化学修飾を行うと、RNA の化学的安定性、RNase 耐性、siRNA の細胞透過性を高めることが可能になる。2'-水酸基のフロロ化やデオキシン化、リン酸部位のホスホチオエート化などがこの例である。化学修飾により安定性が上昇するが、修飾部位、修飾度などにより siRNA 分子の生体内での効き方に大きな差が出てくることも注意が必要である。

最近ではコレステロールの化学修飾により生体内安定性を向上させ、動物体内での RNAi 効果を観察したという報告もなされている 1。

生体内では DNA の情報をもとにして RNA ポリメラーゼという酵素が一塩基ずつ RNA を合成する。この反応を試験管内で行うという方法が in vitro合成である。RNA の鍵型とする DNA を作成し、試験管内転写により酵素的に RNA を合成する。この場合のメリットはもともと RNA が合成されるステップを踏むために化学合成と比べてステップ数、時間、コストの面で有利であるという点があげられる。

鍵型となる DNA の設計にはいくつかの方法が採られている。1)RNA のセンステクとアンチセンスを別々に合成するタンデム型。2)センス鎖 - ループ - アンチセンス鎖で構成される短いヘアピン型 RNA (shRNA)。3)転写される RNA 配列の両端にプロモーターを配置し、一度にセンス鎖とアンチセンス鎖を合成する方法などである。
また、プロモーターとしても 1) T7 RNA ポリラーゼ、2) T3 RNA ポリラーゼ、3) SP6 RNA ポリラーゼなどのプロモーターが用いられている。
そしてもうひとつの in vivo 合成で、この方法が最近では主流になっている。この方法は in vitro 合成と同様に、合成したい RNA の配列情報を持つ DNA を生体外で合成してこれを鋳型として生体内に投与する。投与した DNA を鋳型として生体内で RNA を合成させるというものである。この方法は生体内で RNA よりも安定な DNA を投与するために効果が持続する。しかも鋳型があれば生体内で長期的に RNA を発現させることも可能となるため効率が良い方法と考えられている。
この場合も鋳型となる DNA の設計にはいくつかの方法が採られている。1) タンデム型、2) 短いヘアピン型 RNAs (shRNAs) を合成する方法などである。タンデム型の場合、RNA のそれぞれの鎖を別々に合成し、細胞内でアニューロされるため RNA となる配列以外の影響を極力抑えることができるが、細胞内での濃度が低いとアニューロする前に分解されてしまうという欠点がある。これに対し shRNA の場合、アニューロしている状態で細胞内の輸送系により核外に運ばれる為に高効率だが、ループ配列の為に shRNA の細胞内での局在が起こることがある。そして細胞内のダスターにより RNA の形に分解されるが、ループ配列が生体内に残るため、この配列が細胞内で副反応を引き起こす危険性もあるため配列の選択には注意を要する。
また、ポリラーゼは細胞内のものを使用するが、プロモーターとしては 1) Pol レ系プロモーター、2) Pol レ系プロモーターの選択肢がある。Pol レ系の場合、発現量が多いが、細胞特異性は無い、Pol レ系の場合は発現量は多くないが、組織特異的などの特徴がある。

【引用文献】

3.5.3.3 投与方法
遺伝子を生体、あるいは培養細胞に投与する場合、常に問題となるのは投与方法である。遺伝子を目的の部位に十分量投与するためには様々な工夫が必要である。

RNAi が見つかった当初、線虫などにおいて RNA の溶液に一晩浸すといった方法のみで RNAi の効果を得ることができた。哺乳類などにおいてもこの方法は不可能ではない。ヒトにおいても直接患部に RNA を投与するという方法も採用される。この方法は患部を選択が目的とする部位にきちんと送達される確実な方法ともいえる。ただし、特に哺乳類の場合は細胞取り込みの効率が非常に低いために非常に多量の遺伝子を投与しなければならないというデメリットもある。しかしながら、現在までに Phase のがスタートしている唯一の RNAi 医薬（加齢性黄斑変性症に対する医薬）は目に直接投与する方法を用いており副作用が少ない数少ない方法ともいえる。このほかにも筋肉内投与して腕や心筋の筋芽細胞にター
ゲティングする、肺に直接吸入するなど多くの臓器に応用されており、皮膚、脳、筋組織にも応用される。

細胞内取り込みを向上させるにはベクターと呼ばれる運び屋を用いる必要がある。このベクターには大きく分けて 2 種類のものがある。ひとつはウイルスベクター、もうひとつは非ウイルスベクターである。

ウイルスは宿主の細胞内にその遺伝子を送り込み、その遺伝子産物を宿主に作らせる機能を持っている。この機能を利用して外来遺伝子を細胞内に送り込むというのがウイルスベクターである。ウィルスベクターは他のベクターと比べ、遺伝子導入効率が非常に高いが、安全性が問題視されている。よく用いられるものとしては、レトロウイルス、レンチウイルス 1, 2, 3, アデノウイルス 4 や、アデノ類似ウイルス 5 などがあげられる。

人工的に作成したベクターを非ウイルスベクターと呼ぶ。人工的だなだけに生産効率は良いが、遺伝子導入効率が低く、また安全性に関しても疑問が持ち上がっている。カチオン性脂質のリポソームや正電荷高分子キャリアーがこの例である。正電荷物質は細胞毒性が高いものが多いが、これを抑え、異に遺伝子発現効率、ターゲッティング能を上げる為に各種ペプチドや、リガンドで修飾を行うことが多いようだ。カチオン性脂質のリポソームは近頃研究が進み、毒性の低いものが開発されてきている 6。

現在のところ一番安全で遺伝子導入効率が良く、目的とする患部に集積させられるというような投与方法は見つかっておらず、多くの研究開発が行われている。これらは目的にあわせて選択してゆく必要性がある。

【引用文献】

3.5.4 各種応用への試み
機能性 RNA の一つ、RNAi の技法はこれまでの遺伝子サイレンシング技法と比較して格段に応用範囲の広い技術である。基礎研究から医薬への応用にわたって実用化への努力がなされている。RNAi における実用化例を以下にあげる。
3.5.4.1 基礎研究分野への応用
基礎研究の分野における利用に関してはここでは3つの例をあげる。
遺伝子の機能解析への応用はRNAi現象が発見されるや否や始められた。ゲノムの配列をもとに設計した様々な配列をもとしsiRNAを培養細胞、あるいは生体に投与して遺伝子の機能を解析するという試みが様々な生物種、様々な細胞を標的として行われてきた。ポストゲノム時代といわれる現在、機能が未知の遺伝子の働きを調べるにはまさに有用な技術である。

疾患の原因遺伝子の解明。病気はいろいろな原因が絡み合って起こるものである。しかし、その原因が遺伝子の発現異常によるものも少なくない。これまでの技術では疾患起こっている細胞において発現量が変化している遺伝子の同定まではできたが、いいたいどの遺伝子の発現がおおもとの原因なのか？その遺伝子の発現をコントロールすれば疾患治療できるのかを調べるのは非常に難しいことであった。RNAiの技術は特に疾患により高発現している遺伝子それぞれに対するsiRNAからなるライブラリーを用いてこの答えを探すために現在利用できるようになってきている。

もうひとつの例としては目的とする変化を起こした細胞を得るための選択圧としてRNAiを用いる手法である。ある遺伝子の発現を抑制するsiRNAを与えたときに、例えば、生存する細胞と死亡する細胞があった場合に生存した細胞を選択してこれの遺伝子の発現状態を調べると始め抑制した遺伝子の働きを補填する機能を持った遺伝子を見つけることが可能となる。

3.5.4.2 医薬分野への応用
ウイルス疾患においては細胞に感染したウイルスゲノムや、ウイルスのmRNAを標的とした治療を行う。これまでではウイルス疾患においいては体内に侵入したウイルス、そして増殖したウイルスを攻撃する為の薬剤を投与するという治療を行ってきたが、RNAi技術を用いた治療では体内におけるウイルスの増殖を抑えるあるいは止めるという方法であるため、非常に有効な治療法になる。RNAiによる疾患の治療の場合、サイレシングする標的の選択には非常に気を遣わなければならない。特に、体内にもともある遺伝子配列を標的にすると種々の副作用が起こってしまう危険性が常にある。しかしながら、外来のウイルスを標的とする場合、体内にもともある遺伝子配列とは異なるため、標的の選択が容易であり、副作用の心配が少ない為RNAiによる治療が有利と言える。
ここにあげる各種ウイルスの名前は現在までにRNAi技術を用いて治療への試みが行われているウイルスである。開発段階はまちまちであるが、少なくとも培養細胞レベルでは有効であることがわかっているものである。
エイズウイルス(HIV)、C型肝炎ウイルス、B型肝炎ウイルス、ポリオウイルス、
SARS ウイルス⑦、インフルエンザウイルス⑧、ウエストナイルウイルス⑩。

次に世界的に罹患率が高く、その治療法も種々研究されている癌について述べる。癌の治療法は大きく分けてこれまで 4 つの方法が用いられている。手術、抗ガン剤、レーザー治療、抗体療法である。どれも利点、欠点があり、第一選択肢となるものは今のところ存在しないが、癌の治療に RNAi を用いるという試みは多くの研究者により行われてきた。

上述のように、内在性の遺伝子を標的とした RNAi 治療には技術的に難しい問題があるが、それ以上に RNAi の選択性の高さが魅力的である。
多くの癌では生体内の癌遺伝子と癌抑制遺伝子の両方に変異が起こることにより癌化が生じ、初期に於いてはその多くは一塗基の変異を生じる。そこで、選択性の高い RNAi 技術を用いて活性化した癌遺伝子を標的とする。
しかしながら多くの癌では多数の異なる変異が繰り返し変異して癌化する為、変異によって進展する癌化のシグナル伝達の下流の遺伝子を標的にする。例えば、癌の転移性に関与する遺伝子を標的にするなども有効な方法である。
国内では例えば、日本新薬のカチオニックリポソームを用いた独自の DDS(Drug Delivery System)を活用した癌の治療に関する動物実験が成功したという報告が最近なされている⑬。

遺伝疾患はゲノム遺伝子変異が原因で発症するわけであるが、この場合、遺伝子産物であるタンパク質の本来持つ機能が消失あるいは低下する場合と新たに病的機能を獲得する場合とある。RNAi を用いた治療は二つめの新たに病的機能を獲得する場合の治療に有効である。つまり、病的機能を獲得した遺伝子配列のみをサイレンシングし、獲得していない、変異していない遺伝子配列はサイレンシングしないという siRNA を用いれば良い。この様な方法を用いた治療の試みは家族性脳萎縮性側索硬化症などでおこなわれつつある⑭。
この他にも加齢性黄斑変性症、コレステロール値を低下させる RNAi などが試みられていている。
【引用文献】
8. Q. Ge et al. PNAS, 100, 2718-2723 (2003)
4. RNA機能研究に関する技術・研究動向

4.1 機能性RNA探索技術

4.1.1 精製技術

機能性RNA（miRNA、siRNA、snRNA、snoRNA、tRNA、rRNA、SRP RNA、tmRNA、mRNAタイプ、等）の多くは、探求研究中では、Transクリブトームそのものおよび、Transクリブトームとプロテオームの間において位置して他の遺伝子の翻訳調節や解体促進により発見をコントロールしている。そのため、高常発現していないものも多いおり、かつその発現番号も多いから非常に少ないものまで多様である。そのため、各種組織や、様々な発生段階において特異的な機能性RNAを発見し、その機能を解析するためには、種の多様な精製法を駆使する必要がある。

4.1.1.1 粗精製

分子量で大まかな分画を採取する。細胞内には高分子のDNAの他に、通常のタンパク質となるmRNA、大量に存在するrRNA分子があり、機能性RNAの解析にとってノイズになってしまわな可能性があるため、できるだけ取り除いておく必要がある。一般的な方法として、フィルター、カラムを利用した製品が数多くあるので、その特徴と利用法を説明する。

【フィルター法（Millipore社，YM-100）】

限界に近い、分子量約100KDa以下の分子はフィルターを通過する。RNAの場合、280
nt程度に当たるが、直鎖状分子のため分離能は必ずしも一致しない。また大量のサンプル
では目詰まりが起こり分離能が落ちる。透過スピードも遅く効率は悪い。これを使用した
論文は報告されている。

<table>
<thead>
<tr>
<th>マイクロコンペンモデル</th>
<th>カラーコード</th>
<th>MAOCG</th>
<th>ベクレオチド</th>
<th>最大濃心力</th>
<th>遠心時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>黄色</td>
<td>3,000</td>
<td>10</td>
<td>10</td>
<td>14,000</td>
</tr>
<tr>
<td>10</td>
<td>緑色</td>
<td>10,000</td>
<td>30</td>
<td>20</td>
<td>14,000</td>
</tr>
<tr>
<td>30</td>
<td>透明</td>
<td>30,000</td>
<td>60</td>
<td>50</td>
<td>14,000</td>
</tr>
<tr>
<td>50</td>
<td>ローズ色</td>
<td>50,000</td>
<td>125</td>
<td>100</td>
<td>14,000</td>
</tr>
<tr>
<td>100</td>
<td>青色</td>
<td>100,000</td>
<td>300</td>
<td>125</td>
<td>DNA/RNA: 500</td>
</tr>
</tbody>
</table>

表4.1.1.1 1: single strand, 2: double strand DNA
【ゲルろ過（Roche社等）】
G-25、G-50などのゲルろ過においても部分的な分画は可能と思われる。

G-50 Sephadex Columns
- Exclusion limit:
 DNA: 72 bp / RNA: 72 bp
- Recovery:
 DNA: ≥90 % / RNA: ≥80 %

G-25 Sephadex Columns
- Exclusion limit:
 DNA: 10 – 12 bp / RNA: 10 – 12 bp
- Recovery:
 DNA: ≥80 % / RNA: ≥80 %

図 4.1.1.1 ゲルろ過カラムの性能

【カラム法（Ambion社，mirVanaシリーズ）】

図 4.1.1.2 mirVana PARIS カラムの精製概要図

カラム（グラスファイバーフィルター）、アルコール濃度依存で小分子を結合・精製できるシステム。製品の目的そのものがmicroRNAの精製・濃縮であり、技術的な論文を含め
報告がある。サンプル量は比較的少なめである。
なお、最近の論文報告では、部分精製をしないtotal RNAあるいは簡易精製のみの状態でラベル化して、マイクロアレイでの発現解析に使用している例が見られるようになってきた。ただし、RNAを精製した時のデータと照らし合わせて互換性のある遺伝子（ブローク）を選別し、解析に回しているようである。
以上より、RNA精製によるデータの確からしさ、精製方法による実験的バイアス、精製手順の煩雑さ、更にシステムティック実験への移行への問題、などを解決できる実験系の開発が必要である。

4.1.1.2 分離精製
新規機能性RNA分子を探索するためには、分子量での分離以外に、配列により分子を単離する技術が不可欠になる。

【2次元ゲル電気泳動（弘前大・牛田：国内調査対象）】
弘前大学・農学生命科学部・応用生命工学科・生体情報工学講座、牛田千里の研究室では、RNA分子をゲル電気泳動により分離し、その発現パターンと配列決定を行っている。概念図としては、図4.1.1.3の様になっている。順を追って説明すると、

step 1
- whole body
- embryon
- Cytoplasm
- Organella

step 2
- Large RNA (>1 kb)
- Small RNA (<1 kb)
- poly(A) RNA (majority: mRNA)
- non-poly(A) RNA (rRNA, tRNA, U snRNA, etc.)

step 3
- 2D-gel electrophoresis
- identification of RNA species of each spot by the sequence determination
- novel RNA
- ncRNA catalog
- RNA preparation from cells of Condition A
- RNA preparation from cells of Condition B
- comparison of expression profiles

図4.1.1.3 2次元ゲル電気泳動法による分離精製法概念図
個体や培養細胞より、total RNA を抽出する。この際に細胞内局在などの選択性を持たせることもできる。

RNA を 1 次ゲルにて分画する。それに加えて、あるいは代えて、poly(A) RNA、tRNA、リポソーム RNA などの配列特徴を用いて、個別分離や除去が可能である。

2 次元のゲル電気泳動（変性条件下）を行い、更に分離能を上げて測定する。という工程となる。

線虫（C. elegans）を用いた、具体的な結果の一つを示す。

図 4.1.1.4 線虫（C. elegans）を用いた 2 次元ゲル電気泳動による分離精製

図 4.1.1.4(A) では、部分的なサイズ分画のうちレーン 3 より約 50 nt 以下の部分を抽出し、ラベル化(RI)後、1 次元のゲルで泳動したものの。B は更に 2 次元まで展開したもの。1 次元で 15 バンドだったものが 91 スポットに分離されている。

同様に 150 - 1,000 nt の部分より機能性 RNA のひとつである snoRNA 分子の未知分子を、線虫より幾つか単離し、機能解析や細胞内局在の同定も行っているなど、将来発展する技術として可能性を持っていると思われる。

牛田の考案した実験法は簡便でしかも再現性が良く、しかもどのような種・細胞株にも応用可能な手法である。再現性が良好ため、発現変動を検出してプロファイル解析をすることが可能であり、かつ未知の遺伝子についての知見を得ることもできる。また興味の対象となり得たスポット(遺伝子)に関しては、ゲルより回収して配列決定することも可能である。現在はスタンダードを含めた解析手法を検討中とのことで、画像を数値化できればデータベース化の可能性も見えてくるものと思われる。

ただし、rRNA、tRNA などの分解産物がコンタミネーションすることを完全に排除できない（備考：ただしこれらも機能性 RNA であり、その分解産物がある刺激で増減したり）
というような現象も観察されているようである)。また1つのスポットが1遺伝子に対応しない場合もあり、配列決定してみないと分からないことも多い。

4.1.1.3 現状の分離精製における課題

現状の分離精製における問題として、発現量が少ないものを単一分子に精製する技術には困難が伴う。この精度を追求することにより、細胞レベルで発現量が非常に少ない分子を単離・同定できる技術、更にはその発現量を測定する技術の開発が待たれる。これとは異なる方向性として、単一分子でなくても配列決定(推測)が可能な技術の創成は、海外との競争という意味で非常に大きな一石を投じる可能性がある。具体的には予測される機能性RNA分子を配列特異的に検出可能なマイクロアレイ技術の開発、未知の機能性RNA分子を粗精製のまま配列決定できるシステムの開発が必要。未知の分子を配列決定する場合には、例えば21塩基分子が300種類混合しているとして、単純計算では6,300塩基分の配列決定を一度にできるツールが存在すれば良いことになる。マイクロアレイ上で配列決定をするSequence by Hybridization (SBH)という手法が原理的には提唱されているが、実現可能なツールは未だ開発されていないため、応用可能な新たな技術の開発が待たれる。

図4.1.1.5 SBHの原理を模式的に示した。

\begin{center}
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{sequence_by_hybridization.png}
\caption{Sequence by Hybridization (SBH)の概念図}
\end{figure}
\end{center}

図4.1.1.5 Sequence by Hybridization (SBH)の概念図

4.1.2 ラベリング技術（主にマイクロアレイでの検出用）

精製された機能性RNA分子群は、MS等の場合を除き、基本的に何らかの方法でラベル化し、検出可能な状態にしなければならない。このときに大きな問題になるのがその効率である。機能性RNAの多くは塩基数が比較的短く、特に最近急速に発展してきたsiRNA (RNAi)、miRNAといった分子では約20塩基と非常に短いものであるため、ラベル化やその後のラベルの增幅といった検出までの工程が非常に難しくなっている。
4.1.2.1 酵素法による色素修飾
蛻光色素を含むラベル剤には、酵素、キット等多種類ある。図4.1.2.1 に通常用いられる色素修飾の原理を示す。

*：色素などで修飾された塩基

3' 鎮型となる DNA or
合成された DNA or

図4.1.2.1 逆転写法による色素取り込みの原理

通常、修飾塩基は20-50塩基に1つ程度の確率で取り込まれることが多いため、ターゲットはある程度長いものが必要になる。（表4.1.2.1参照）

<table>
<thead>
<tr>
<th>反応形式</th>
<th>処理方法</th>
<th>販売メーカー</th>
</tr>
</thead>
<tbody>
<tr>
<td>逆転写酵素</td>
<td>ポリメラーゼ</td>
<td>各社</td>
</tr>
<tr>
<td>逆転写酵素</td>
<td>ポリメラーゼ</td>
<td>各社</td>
</tr>
<tr>
<td>逆転写酵素</td>
<td>ポリメラーゼ</td>
<td>各社</td>
</tr>
</tbody>
</table>

表4.1.2.1 酵素反応形式による色素取り込みの方式

4.1.2.2 化学修飾法による色素修飾
化学修飾法による色素修飾では、DNAだけでなくRNAも直接ラベル化できる点が優れている。
DNA、RNAのグアニン塩基中のN（窒素原子）に共有結合する。このNはハイブリダイゼーションの際にG:Cペアの水素結合には寄与しないため、重らせん形成には大きく影響しないと考えられている。ただし、短いターゲット・プローブの塩基対に修飾塩基が入ることによる、ハイブリダイゼーション（アニーリング）への影響は未知である。図4.1.2.2参照。
図 4.1.2.2 化学修飾法による色素修飾の模式図

このほかに、RNA 末端塩基への化学修飾の方法は、論文（D. Proudnikov and A. Mirzabekov, Nucleic Acid Research 24, 4535-4542, 1996）に報告されている。

図 4.1.2.3 RNA 末端塩基への化学修飾（引用文献より図の一部抜粋。）

4.1.2.3 酵素的付加法
酵素的付加法には、
- Terminal transferase (DNA)
- Poly(A) polymerase (RNA)
- T4 RNA ligase (RNA, (DNA: 効率悪い))
- T4 polynucleotide kinase (DNA & RNA)
などがある。以下のそれぞれの特徴を記す。
(1)Terminal Deoxynucleotidyl Transferase (TdT)（タカラバイオ、他各社）
本酵素は反応に鋳型を必要とせず、一本鎖または二本鎖 DNA の 3'-OH 末端にデオキシヌクレオチドを重合する反応を触媒する。プライマーとなるには最低 3 塩基以上のオリゴデオキシヌクレオチドが必要である。

これを miRNA に応用するためには、まず逆転写反応により cDNA を合成しておく必要がある。ラベルには、修飾塩基を取り込ませて蛍光により検出するか、ラジオアイソトープ標識された塩基（ddATP など）を使用する。

(2)Poly(A) Polymerase（タカラバイオ、他各社）

本酵素は各種のポリリボヌクレオチドの 3'末端にアデニル残基を重合していく酵素である。一本鎖 RNA はプライマーとして用いることができるが、二本鎖 RNA や合成ポリヌクレオチド、短いオリゴヌクレオチド等はプライマーになりにくい。DNA はプライマーとしては機能しない。この酵素は AMP 残基を重合していくが、基質としては ATP のみを用い、ADP や dATP は基質となり得ない。また UTP、CTP の取込みは ATP の 5%以下で、GTP は基質として重合することはできない。

| 反応時間による ATP の付加個数（参考） |
| 反応時間（分） | 0 | 5 | 10 | 30 | 60 |
| Poly(A) bases | 0 | 10 | 20 | 40 | 75 |

標識されたアデニン塩基の取り込み効率は必ずしも高くない。アミノアリル ATP のような小さな修飾塩基は取り込み可能。ただし、付加個数（ラベル効率）を一定にすることは不可能である。ラジオアイソトープによる標識でも同様。

短い分子に対して、Poly(A) polymerase や TdT を用いてエキストラな塩基を付加させた後に、それに相補的なプライマーを用いて（Poly(A)に対して oligo dt の様に）相補鎖を合成させつつラベル化を行う手法も可能であり、海外調査先の UCSC、 Lowe 博士も紹介されていた。

(3)T4 RNA Ligase（タカラバイオ、他各社）

本酵素は、5'-P 末端のオリゴヌクレオチドと、3'-OH 末端のオリゴヌクレオチドを結合させる酵素である。補酵素として ATP を要求する。分子内ライゲーションによる環化反応、分子間ライゲーションともに起こる。最小基質は NpNpNOH（3'-OH オリゴマー、受容体）、pNp（5'、3'DP モノマー、供与体）である。ライゲーション効率は受容体、供与体それぞれの塩基に大きく影響される。DNA は RNA よりもかなり効率が悪い。

反応効率はポリメール化等と比較して高くない。また修飾塩基では効率が落ちると共に、基質末端塩基の影響は更に大きいようである。反応効率は供与体の濃度を上げることと、
温度・時間を最適化することである程度対応することができる。更に、供与体の 3'末端を修飾塩基等でブロックすることにより、1 分子 1 ラベルのようにコントロールすることが可能である。これを利用して RNA を直接ラベルし、miRNA の検出をマイクロアレイ上で実現した報告がある（Thomson et al., Nature Methods 1, 47-53, 2004）。
ラジオアイソトープの場合には、pCp を反応させることで 1 分子 1 標識が可能である。反応効率は蛻光ラベルより高い。

(4) T4 polynucleotide kinase（タカラバイオ、他各社）
蛻光ラベルでは現時点で不可能であるが、5'末端へのラベル法として T4 polynucleotide kinase を用いて、ガンマ位のリノ酸をラジオアイソトープ標識した塩基から、リン酸基を DNA または RNA 分子の 5-OH 基へ転移する反応がある。これにより非常に効率良く、しかも 1 分子 1 標識を実現することが可能である。これに代わる蛻光ラベル生成技術が開発できれば、定量的にしかも検出も容易な実験系が実現できる可能性がある。

4.1.2.4 機能性 RNA への色素標識技術の課題
siRNA、microRNA といったかなり短い分子への蛻光ラベル化効率は低く（1 分子あたり 1 個程度が限界）、しかも発現量が低い場合に現状の検出技術ではシグナル検出が困難。新規ラベルの開発、マイクロアレイの検出限界の向上、および検出器の性能向上が必要。網羅的研究で世界を追随する、あるいは追い抜くためには、単なる改良ではなく、圧倒的な技術革新が必要と思われる。

4.1.3 機能性 RNA の検出方法
4.1.3.1 ハイプリダイゼーション法以外の検出法
ハイプリダイゼーション法以外の検出方法として、primer extension 法、ligation を利用した検出法、quantitative RT-PCR 法などの既知技術がある。
これらの検出能力はマイクロアレイよりもかなり高いが、既知の配列のみが実験可能であるため、探索的な目的には使用できない。また、機能性 RNA はその特殊な構造により、プライマーを必要とする解析には非常に困難を伴う場合も多い。今後はマイクロアレイ技術と組み合わせたような、未知の中でも検出できる能力の高い技術開発を、日本独自のプロジェクトとして提言できること、世界をリードしていくことが可能になると考えられる。

4.1.3.2 ターゲット遺伝子の実験的解析法
microRNA が機能する上でターゲットとする遺伝子の実験的探索は、現在までほとんど進んでいない。特に哺乳類で新たに単離された miRNA についてはコンピュータ予測以外にターゲットを探す技術が存在しないのが現状である。しかし単離可能な miRNA はほぼ出揃ってきた印象があり（miRNA Registry: www.sanger.ac.uk/Software/Rfam/mirna）。今後、
世界の研究者の関心はその機能面に向くものと思われる。技術開発の方向性としては、コンピュータ予測の遺伝子を実験的にスクリーニングしていく高出力解析技術の開発は可能かもしれない。独自の視点から新たな実験法を確立するとすれば、microRNA、siRNAがそのターゲット遺伝子と対を作った状態（RISC複合体中）のまま回収し、第4.1.1章で述べたような方法論を用いて部分配列を決定後、ゲノムより遺伝子を同定する解析手法は、大きなブレーカースルーと成り得るかもしれない。

ただし、現在までにRISCコンプレックスの存在は確認されているが、その構成成分の全容や、どのように機能しているのかなど、未知の部分が多く残されており、機能している状態の複合体を抽出して内容物を同定する作業はまだこれからの研究分野になるため、ツールの開発と研究の進展が重なることが重要な要因となる。

前述各項の技術開発のもう一つの目的は、この領域の解明に結びつく可能性にある。すなわち、できるだけ正確に予測されたターゲット遺伝子候補を、そのシークエンスの組合せを再配列決定可能なマイクロアレイを用いるか、あるいはすべての候補を検出できるブローブを搭載したチップ上で、非常に効率良く検出する手法の技術開発が必須である。
4.2 バイオインフォマティクス支援ツール

この章では、情報処理工学的に機能性 RNA を探索するアルゴリズムについて、現在国内外の研究者が利用しているツールについて解説する。

4.2.1 機能性 RNA 遺伝子発見

タンパク質をコードする遺伝子の発見手法には、配列アラインメントによる手法と、確率文法（主には hidden Markov model; HMM）を用いた手法とに大別されるが、いずれも基本的に一次配列のみを考慮した手法で実用的性能が得られる。ncRNA 遺伝子を対象とする場合には、二次構造(ncRNA 遺伝子が転写され、スプライシングなど、転写後の修正が行われた後の) を考慮する必要がある (snoRNA のように、二次構造を考慮するだけでは不十分な場合もある)。実際には、標的とする ncRNA の二次構造情報が得られている場合とそうでない場合があるが、後者の場合のほうが圧倒的に多いことを考えると、二次構造未知の ncRNA 遺伝子発見手法について、特に考える必要がある。

4.2.2 ncRNA 発見の困難な点

ncRNA 遺伝子にはタンパク質遺伝子に見られるような coding potential (codon bias) といった便利な一般的な指標に乏しい。有名な熱力学的安定性は、coding potential ほど強力な指標ではないことがはっきりしているし、stop codon が一定区間現れない open reading frame (ORF) という分かりやすい指標も存在しない。配列保存性の高い ncRNA 遺伝子であれば、従来通り、配列アラインメントで対処可能であろうが、tRNA の場合を例にあげれば、高い配列保存性ゆえに、保存された二次構造を明らかにするためには、二次構造に関する知見を動員する必要があるといった場合も存在する。このように、ncRNA 遺伝子発見に関しては、個別の ncRNA 遺伝子ごとの対処法があっても、一般的な ncRNA 遺伝子発見に有効な指標というものは未だ見つかっていない。そのことが、この問題を難しくしている。

4.2.3 ncRNA 発見手法の分類
【Gardner と Giegerich による分類】

相同な RNA の配列と二次構造を解析する自動化された現行の手法は、多くの場合、3つの分類に分類される。プラン A は、標準的な多重配列アラインメントアルゴリズムを用いて生成された、アラインメント精度の配列を用いる。そこから、進化的、熱力学的詳細を抽出して、保存された二次構造を推定する。この方法は最も有効な方法であるものの、与える配列データが、初段のアラインメント工程がうまく働く程度に同様性が高く、なおかつ構造的に矛盾の無いミューテーションを検知できる程度には多様性を備えている必要があるというように、データに対する制約が厳しい。プラン B は、Sankoff アルゴリズム
4.2.4 既存ツールの詳細
第4.2.3章の各Planで使用されるツールには下記のようなものがある。また GardnerとGiegerichにより下記のRNAを用いて、各ツールのSensitivity、Selectivity、Correlationが検討されている。

<table>
<thead>
<tr>
<th>Data-set</th>
<th>length</th>
<th>mean pairwise seq. identity</th>
<th>Number of Sequences</th>
<th>Alignment source</th>
<th>Structure source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>Med.</td>
<td>High</td>
<td>Med.</td>
</tr>
<tr>
<td>E. coli LSU rRNA</td>
<td>2904</td>
<td>88.1 (0.12)</td>
<td>72.0 (0.35)</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>E. coli SSU rRNA</td>
<td>1542</td>
<td>90.7 (0.08)</td>
<td>80.0 (0.21)</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>E. coli RNase P</td>
<td>377</td>
<td>81.5 (0.09)</td>
<td>67.1 (0.41)</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>S. cerevisiae tRNA-PHE</td>
<td>73</td>
<td>84.4 (0.19)</td>
<td>60.0 (0.71)</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

39

4.2.4.1 PSTAGs
(Pair Stochastic Tree Adjoining Grammers, http://www.dna.bio.keio.ac.jp/pstag/)

慶應義塾大学理工学部生命情報学科　椚原らにより開発されたアルゴリズム。

シードノットをもつRNAの構造アラインメントアルゴリズムである。構造既知のRNAをもとに、二次構造形成のRNAをPair HMMs(隠れマルコフモデル)でアラインメントするPHMMTs（Pair HMMs on Tree Structures）にシードノットのモデリングに適したContext-Sensitive Grammer(文脈依存文法)のサブクラスであるTree Adjoining Grammer(接木文法)を組み入れ、シードノットを含んだRNAの構造アラインメントを可能にしたアルゴリズム（Binaryコードが以下URLにて公開されているhttp://www.dna.bio.keio.ac.jp/pstag/）。

このアルゴリズムはRfam ver5.0(www.sanger.ac.uk/Software/Rfam)中の3つのRNAについてそのSpecificityとSensitivityについて検討されている。

シードノットの情報はLeiden大学のシードノットデータベース（PseudoBase,http://wwww.bio.leidenuniv.nl/~Batenburg/ PKB.html）に依っている。ここでSpecificity=TP/(TP+FN)であり、Sensitivity=TP/(TP+FP-[]）、ここでTP(True Positive):正しく予測された塩基対、FN(False Negative):参照配列中にある塩基対で予測されなかった塩基対、FP(False Positive):正しくなかった塩基対、[]:FP の度合いを表す係数である。検定に利用されたRNAファミリーは表4.2.1の通りである。

<table>
<thead>
<tr>
<th>Name</th>
<th>Ave.length</th>
<th>number of Sequences</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corona_pk3</td>
<td>62.9 (62 – 64)</td>
<td>14</td>
<td>Coronavirus 3' UTR pseudoknot</td>
</tr>
<tr>
<td>HDV_ribosome</td>
<td>89.1 (87 – 91)</td>
<td>15</td>
<td>Hepatitis delta virus ribozyme</td>
</tr>
<tr>
<td>Tombus_3_1V</td>
<td>91.2 (89 – 92)</td>
<td>18</td>
<td>Tombus virus 3'UTR region IV</td>
</tr>
</tbody>
</table>

表4.2.1 検定に利用されたRNAファミリー
これらの RNA ファミリーに対して PSTAG による構造予測を行い、Specificity と Sensitivity は表 4.2.2 の通りであった。

<table>
<thead>
<tr>
<th>Name</th>
<th>Specificity (%)</th>
<th>Sensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (± std.dev.)</td>
<td>worst</td>
</tr>
<tr>
<td>Corona_pk3</td>
<td>95.5 ± 5.0</td>
<td>72.2</td>
</tr>
<tr>
<td>HDV_ribosome</td>
<td>95.6 ± 5.1</td>
<td>81.5</td>
</tr>
<tr>
<td>Tombus_3_1V</td>
<td>97.4 ± 60.0</td>
<td>76.0</td>
</tr>
</tbody>
</table>

表 4.2.2 PSTAG による構造予測の特異性及び感度

更に“PSTAG”とペア隠れマルコフモデルによる“PHMMTS”と配列のホモロジーを計算する”Clustal – W”の 3 種類のアルゴリズムを HDV_ribosome に適用し、各アルゴリズムでの Specificity と Sensitivity を比較している。表 4.2.3 参照

<table>
<thead>
<tr>
<th>Method</th>
<th>Specificity (%)</th>
<th>Sensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSTAG</td>
<td>88.9</td>
<td>96.0</td>
</tr>
<tr>
<td>PHMMTS</td>
<td>46.4</td>
<td>52.0</td>
</tr>
<tr>
<td>Clustal - W</td>
<td>25.9</td>
<td>28.0</td>
</tr>
</tbody>
</table>

表 4.2.3 各アルゴリズムによる特異性及び感度の比較

比較解析以外のシュードットを含んだ RNA の構造解析に理論に基づくアルゴリズムと学習的に行う（ヒューリスティック）アルゴリズムがいくつかあるが、ヒューリスティックに構造予測を行う ILM (Iterated Loop Matching) と PSTAG を比較し、両者のアルゴリズムの Specificity と Sensitivity がほぼ同程度であるとの結論を得ている。表 4.2.4 参照。

<table>
<thead>
<tr>
<th></th>
<th>HDV_ribosome</th>
<th>TMV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specificity (%)</td>
<td>Sensitivity (%)</td>
</tr>
<tr>
<td>PSTAG</td>
<td>88.9</td>
<td>96.0</td>
</tr>
<tr>
<td>ILM</td>
<td>100.0</td>
<td>82.4</td>
</tr>
</tbody>
</table>

表 4.2.4 PSTAG法と ILM 法による予測の比較
Non-coding RNA をゲノム配列から推定・検出するために、樋原らは PSTAG をベースとしたデータベース上での Local Structure Alignment アルゴリズムを開発している。

【参考文献】
1 Hiroshi Matsui et al, IEEE Computational Systems Bioinformatics Conference (CSB’04), 290, 2004

4.2.4.2 Scarna
(Stem Candidate Aligner for RNA http://www.scarna.org/)
東京大学大学院新領域創成科学研究科 情報生命科学専攻 浅井らにより開発されたアルゴリズム。全ゲノム配列から二次構造を考慮した高速なアラインメントを行うために以下の様々なアルゴリズムに基づくプログラムを作成している。
- 比較する両者の RNA 配列を全ての可能なステム候補配列 (Stem Candidate Sequence, SCS) に変換する。ステムの長さは通常 3〜5 に固定し、ステムの 2 つの配列、シーンス上での 2 つのセグメントの距離、ステムのスタッキングエネルギーをスコア化する。
- SCS を動的計画法によりアラインメントする。アラインメントは配列の類似性、セグメントの距離の違い、スタッキングエネルギーに基づいて行う。Scarna の Time Complexity は O(L^2)である。

4.2.4.3 SOKOS
(Software for Kernel Computation Over SCFG, http://www.cbrc.jp/~taishin/repo/sokos/)
東京大学大学院新領域創成科学研究科 情報生命科学専攻 金らにより開発されたアルゴリズム。カーネル法により RNA の二次構造を考慮にいった 2 つの RNA 配列の類似性を推定する。二次構造既知の RNA を比較する場合 Context Free Grammar (文脈自由文法) を用いる。二次構造未知の RNA の類似性を推定する場合、確率モデルである Stochastic Context Free Grammar を用い、Marginal count kernel (MCK) と呼んでいる。図 4.2.1 は 3 クラス (25 Ala-AGC, 26 Asn-GTT, 23 Cys-GCA, GtRDB より 取得 http://rna.wustl.edu/GtRDB/) の tRNA を SOKOS により推定した場合の PCA 解析の結果である。2nd order MCK を用いて推定した場合に、よく分離されている。
図 4.2.1 SOKOS により推定した場合の PCA 解析の例

4.2.4.4 Plan Aに基づくツール

Sequence alignment

- t-coffee
 (http://igs-server.cnrs-mrs.fr/~cnotred/Projects_home_page/t_coffee_home_page.html)
 multiple sequence alignment を行うパッケージソフトウェア。数多くの Protein または DNA 配列を与えることにより、multiple sequence alignment を生成する。
- ClustalW (http://bess.u-strasbg.fr/Biolinfo/ClustalWX/)
 multiple sequence alignment を行うソフトウェア。
- prrn (http://www.cbrc.jp/~gotoh/softdata.html)
 doubly nested iterative refinement method により protein または DNA 配列の集合から global multiple sequence alignment を行う。
関連するレビュー記事は以下の URL にある。

Fold alignment

- pfold (http://www.daimi.au.dk/~compbio/rnafold/)
 SCFG を用いた Fold alignment を行う。Knudsen&Hein のアルゴリズム
列（作成者により検討中）を除きその Sensitivity 、Selectivity、Correlation は各々 66-100%、89-100%、0.77 – 1.0%であった。
・ RNAalifold (http://www.tbi.univie.ac.at/~ivo/RNA/) free-energy と covariation measure の組合せにより、Folds alignments を行う。Vienna package に同梱されている。時間とメモリの複雑性はそれぞれ O(Nn^2+n^3)、O(n^2)(N:配列の数、n:配列長)である。web 上でのサービス (http://rna.tbi.univie.ac.at/cgi-bin/alifold.cgi) もある。Sensitivity、Selectivity、Correlation は各々 57 – 91%、57 – 100%、0.57 – 0.95。
・ ILM (Iterated Loop Matching) [http://www.cs.wustl.edu/~zhang/projects/rna/ilm/] 自由エネルギーと相互情報量の組み合わせを用いて、ステムを評価する。高いスコアのステムを順次選択する。pseudoknot を取り扱うことが可能。Sensitivity、Selectivity、Correlation は各々 31 – 100%, 26 – 75%，0.29 – 0.86 であった。
・ HXMATCH (http://www.tbi.univie.ac.at/papers/SUPPLEMENTS/HXMATCH/) 数個の RNA 配列のアラインメントに基づいて pseudoknot を含むコンセンサス構造を計算する。アルゴリズムは、すべての可能性のある塩基対にスコアを与えるために、thermodynamic と covariation information 組み合わせたものである。塩基対は maximum weighted matching algorithm 利用して選ばれる。ソースコードがダウンロード可能。
・ Msfold (http://www.lcb.uu.se/~evaf/Msfold/) matlab のツールボックス。相互情報を用いて、pseudoknot を考慮したアラインメントを行う。

4.2.4.5 Plan B に基づくツール
・ Sankoff
一般的に Sankoff アルゴリズムは、O(n^3m)の時間と O(n^2m)のメモリが必要である (n:配列の長さ m:配列の数)。以下のアルゴリズムは、Sankoff アルゴリズムに、サイズや部分構造などの制限を加えたものが多い。
・ Foldalign (http://www.bioinf. au.dk/FOLDALIGN/) 保存された局所配列およびヘアピッチ構造を CONSENSUS や CLUSTAL のようなヒューリスティック手法を用いて予測する。時間とメモリに関するオーダはそれぞれ O(L^4 N^4)、O(L^4 N)(for N sequences of length L)である。Sensitivity、Selectivity、Correlation となった (各々 5 – 24%、23 – 36%、0.11 – 0.27)。
・ Dynalign (http://rna.urmc.rochester.edu/)
ヘアピッチアラインメントに限定した Sankoff アルゴリズムの実装。2 つの配列をアラインメントさせ分割した尿のために“full energy model”と comparative information を用いる。O(L^3 M^3)の時間オーダ (L: 配列長、M:ステム間の距離の最大)。平均の
Sensitivity 、Selectivity、Correlation は各々 32-54%、33-54%、0.32-0.54 であった。

- CARNAC (http://bioinfo.lifl.fr/carnac/)
 Cofolding により RNA alignment を行う。Sankoff のアルゴリズムを厳密に実装しているわけではない。非常に高速かつ選択的であるのが感度がやや悪い。ペアワイスの場合の時間とメモリに関するオーダは実験的に $O(n^2)$ である。C で書かれたソースコードが配布されている。carnac の概要論文。carnac のアルゴリズムに関する論文。Sensitivity 、Selectivity、Correlation は 45 – 71%, 92-100%, 0.65 – 0.82.

- pmmcomp / pmmulti (http://www.tbi.univie.ac.at/RNA/PMcomp/)
 それぞれ RNA の pairwise alignment および progressive multiple alignments を行う。pmmcomp は同時 folding およびアラインメントを行うために、Sankoff's algorithm の变形したものです。RNAfold -p によって得られる pre-computed base pair probability matrices を入力として必要とする。pmmulti は、pmmcomp を繰り返し呼ぶことによって progressive multiple alignment を行うための単なる wrapper プログラムである。プログラムは現在 perl で書かれたものが配布されているが、より高速な C で書かれたものが近々配布される予定である。ペアワイスアラインメントでは、記憶域複雑度が $O(L^{-3})$、計算複雑度が $O(L^{-4})$。

- Stemloc (http://dart.sourceforge.net/)
 DART(DNA/Amino/RNA Tests)と呼ばれるパッケージの内の1つとして配布されている。RNA 配列のペアワイスアラインメントを行う。"envelopes" として知られるヒューリスティックアルゴリズムを用いて、Sankoff のアルゴリズムを変形したものである。

- ComRNA
 グラフ理論における clique 探索アルゴリズムを用いて、複数の RNA 配列から共通の二次構造モチーフを発見する。pseudoknot を取り扱うことが可能。このアルゴリズムは Sankoff アルゴリズムとは大きく異なるが、事前に RNA のアラインメントを仮定していない点は Sankoff アルゴリズムと同じである。

4.2.4.6 Plan C に基づくツール
 * Fold sequences
 - Crystallography/NMR
 - MFE prediction (Single sequence RNA folding algorithms)
 Single Sequence の Minimum Free Energy(MFE) を計算し、二次構造予測を行うアルゴリズムは以下の Mfold, RNA fold, Sfold がある。
 - Mfold (http://www.bioinfo.rpi.edu/applications/mfold/)
Mike Zuker の有名な MFE による RNA 構造予測アルゴリズム。時間とメモリに関してそれぞれ O(n^3)、O(n^2)のオーダ（n:配列長）。こちらも参照。Zuker による RNA 折りたたみに関するドキュメント。

・RNAfold (http://www.tbi.univie.ac.at/~ivo/RNA/)
Vienna RNA Package に同梱されている RNA 構造予測プログラム。

・Sfold (http://sfold.wadsworth.org/srna.pl)
可能性のある構造から統計的なサンプリングを行う。サンプリングは partition function probabilities により重み付けされる。
Single sequence RNA folding algorithms (http://www.tbi.univie.ac.at/~ivo/RNA/) を参照。

Structure alignment

・RNAforester (http://bibiserv.techfak.uni-bielefeld.de/rnaforester/)
forrest alignment 手法を用いた、RNA 2 次構造の比較およびアラインメントソフトウェア。現在のところ、Web 経由でのみのサービスが提供されている。Sensitivity , Selectivity, Correlation は 29 - 67%, 27 - 67%, 0.26 – 0.66。

・MARN.A (http://www.bio.inf.uni-jena.de/Software/MARN.A/index.html)
RNA の一次配列および二次構造を考慮したマルチプルアラインメントを行うことが可能。edit operations のコストを用いた、2 配列の比較に基づいている。現在のところ、Web 経由でのサービスのみが提供されている。Sensitivity , Selectivity, Correlation は 29 - 52%, 0.30 – 0.65。

General structure search

・RNAProfile (ftp://www.pesolelab.it/pub/RNAprofile/)
アラインメントされていない RNA 配列のセットから、配列と二次構造の類似性をともに考慮して、もっともよく保存されている領域を出力する。

ペアワイズアラインメントまたはマルチプルアラインメントから保存された領域を見つけ出すアルゴリズム。時間に関して O(n^2)（n:配列長）のオーダである。機械学習の手法を用いているわけではないので、教師データがいらない。

・QRNA (http://selab.wustl.edu/cgi-bin/selab.pl?mode=software)
比較ゲノム解析(BLAST)により、シンテニー領域において、保存された二次構造を同定する。

・RNAz (http://www.tbi.univie.ac.at/~wash/RNAz/)
構造が保存されていて熱力学的に安定な RNA 二次構造をマルチプルアラインメントから見つける。ソフトウェアを関連する論文を発表した後に配布予定である。論文のプレビュー。

・MSARi (http://theory.lcs.mit.edu/MSARi/)
RNA の保存された二次構造を発見する。アルゴリズムの詳細は下記 URL にある論文（http://www.pnas.org/cgi/content/full/101/33/12102）を参照。

Family specific searches
・tRNAscan-SE (http://selab.wustl.edu/cgi-bin/selab.pl?mode=software)
真核および原核生物の 99%以上の tRNA を見つけることが可能である。false positive の割合は 15Gbase に 1 個以下である。また探索速度は 30 kb/second である。
・snoScan
C/D 型の snoRNA を探索するプログラム。事前にメチル化の位置等の情報を入力しなければならない。
・MiRscan (http://genes.mit.edu/mirscan/)
与えられた配列に対して、実験で確認が取られている C. elegans/C. briggsae の 50 の miRNA との類似度に基づいてスコアを計算する。
・snoGPS (http://lowelab.ucsc.edu/snoGPS/)
ゲノム配列から HACA 型 snoRNA を探索する。ソースコードは現在ダウンロードできない。

RNA homology search/gene-finding
・Infernal (http://www.genetics.wustl.edu/eddy/infernal/)
RNA の二次構造を考慮したマルチプルアラインメントからプロファイルを作成する。そのプロファイルを用いてデータベースを検索する。
・RSEARCH (http://selab.wustl.edu/cgi-bin/selab.pl?mode=software#search)
配列データベースから類似の RNA を発見するために、local alignment アルゴリズムを利用して観察されるアルゴリズムの詳細の論文。
・FastR
(http://conferences.computer.org/bioinformatics/CSB2004/PDF/004_Bafna_V_Zhang_S.pdf)
二次構造が既知の RNA 配列に対して、効率的な配列データベース検索（二次構造の類似性も考慮する）を行うアルゴリズム。現状では、ソフトウェアや Web でのサービスは提供されていないようである。
・COVEMF (http://www.lcb.uu.se/~dave/COVEMF.html)
S.R.Eddy の力作 COVE（現在メンテナンスはされていない）のスーパーセットと自称する。
4.2.5 機能性 RNA に関するデータベース

Nucleic Acids Research では毎年、分子生物学関連の public なデータベースを集めた特集号を発行している。2005 年のコレクション（Michael Y., Galperin, Nucleic Acids Research, 33, Database issue, D5）には、719 のデータベースが含まれ、そのうち RNA sequence database として 34 のデータベースが含まれている。以下は各データベースとその URL である（_datambaseの名称、Full name または説明、URL の順）。

16S and 23S rRNA Mutation Database
16S and 23S ribosomal RNA mutations
http://www.fandm.edu/Departments/Biology/Databases/RNA.html
5S rRNA Database
5S rRNA sequences
http://biobases.ibch.poznan.pl/5SData/

Aptamer database
Small RNA/DNA molecules binding nucleic acids, proteins
http://aptamer.icmb.utexas.edu/

ARED
AU-rich element-containing mRNA database
http://rc.kfshrc.edu.sa/ared

Mobile group II introns
A database of group II introns, self-splicing catalytic RNAs
http://www.fp.ucalgary.ca/group2introns/

European rRNA database
All complete or nearly complete rRNA sequences
http://www.psb.ugent.be/rRNA/

GtRDB
Genomic tRNA database
http://rna.wustl.edu/GtRDB

Guide RNA Database
RNA editing in various kinetoplastid species
http://biosun.bio.tu-darmstadt.de/goringer/gRNA/gRNA.html

HIV Sequence Database
HIV RNA sequences
http://hiv-web.lanl.gov/

HuSiDa
Human siRNA database
http://itb1.biologie.hu-berlin.de/~nebula/sirna/
HyPaLib
Hybrid pattern library: structural elements in classes of RNA
http://bibiserv.techfak.uni-bielefeld.de/HyPa/

IRESdb
Internal ribosome entry site database
http://ifr31w3.toulouse.inserm.fr/IRESdatabase/

microRNA Registry
Database of miRNA (small non-coding RNAs)
http://www.sanger.ac.uk/Software/Rfam/mirna/

NCIR
Non-canonical interactions in RNA structures
http://prion.bchs.uh.edu/bp_type/

ncRNAs Database
Non-coding RNAs with regulatory functions
http://biobases.ibch.poznan.pl/ncRNA/

NONCODE
A database of non-coding RNAs
http://www.bioinfo.org.cn/NONCODE/index.htm

PLANTncRNAs
Plant non-coding RNAs
http://www.prl.msu.edu/PLANTncRNAs

Plant snoRNA DB
snoRNA genes in plant species
http://bioinf.scri.sari.ac.uk/cgi-bin/plant_sorna/home

PolyA_DB
A database of mammalian mRNA polyadenylation
http://polya.umdnj.edu/polyadb/
PseudoBase
Database of RNA pseudoknots
http://wwwbio.leidenuniv.nl/~Batenburg/PKB.html

Rfam
Non-coding RNA families
http://www.sanger.ac.uk/Software/Rfam/

RISSC
Ribosomal internal spacer sequence collection
http://ulises.umh.es/RISSC

RNAdb
Mammalian non-coding RNA database

RNA Modification Database
Naturally modified nucleosides in RNA
http://medlib.med.utah.edu/RNAmods/

RRNDB
rRNA operon numbers in various prokaryotes
http://rrndb.cme.msu.edu/

siRNAdb
siRNA database and search engine
http://sirna.cgb.ki.se/

Small RNA Database
Small RNAs from prokaryotes and eukaryotes
http://mbr.bcm.tmc.edu/smallRNA

SRPDB
Signal recognition particle database
http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html
SSU rRNA Modification Database
Modified nucleosides in small subunit rRNA
http://medstat.med.utah.edu/SSUmods/

Subviral RNA Database
Viroids and viroid-like RNAs
http://subviral.med.uottawa.ca/

tmRNA Website
tmRNA sequences and alignments
http://www.indiana.edu/~tmrna

tmRDB
tmRNA database
http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html

tRNA sequences
tRNA viewer and sequence editor
http://www.uni-bayreuth.de/departments/biochemie/trna/

UTRdb/UTRsite
5'- and 3'-UTRs of eukaryotic mRNAs
http://bighost.area.ba.cnr.it/srs6/
またRNAの構造データベースとして

RNABase
RNA-containing structures from PDB and NDB
http://www.mabase.org/

SCOR
Structural classification of RNA: RNA motifs by structure, function and tertiary interaction
http://scor.lbl.gov

がある。
これらのデータベースには、ribosomal RNA、tRNA、tmRNAなどに絞った限定的なデータベースとnon-coding RNA全般を網羅するものがあり、Rfam、RNAdb、NONCODEなどがそれにあたる。
Rfam（http://www.sanger.ac.uk/Software/Rfam/、Sam Griffiths-Jones, et al., Nucleic Acids Research, 33, DataBase issue, D121, 2005）は、the Wellcome Trust Sanger Institute, and Washington University, St. Louisのjoint projectとして運営されている。Release1.0では、塩基配列の55,000の領域で25ファミリにアノテーションがつけられていたが、現在のRelease6.1では、379ファミリになっている。このデータベースは、包括的なnon-coding RNAのデータベースで、マルチプルアラインメントと確率自由文脈文法（SCFG）を用いた二次構造情報が集められている。このDataBaseでは、non-coding RNAをキーワードと配列から検索を行うことができる。図4.2.5.1はキーワード検索を行った結果である。キーワードとして、spliceを入力すると、ncRNAのファミリーとして、U1spliceosomal RNA、U7small nucleolar RNA、Group II catalytic intron、U23small nucleolar RNA、SL1RNA、SL2RNA、U2spliceosomal RNA、U12minor spliceosomal RNA、U4spliceosomal RNA、U5spliceosomal RNA、U6spliceosomal RNA、U7small nucleolar RNA、U19small nucleolar RNA、U83/U84small nucleolar RNA、U93small nucleolar RNA、U50small nucleolar RNA、Small nucleolar RNA U6-53/MBlI-28が抽出された。その中から、例えばU2spliceosomal RNAを選ぶと、その説明と予測される二次構造、およびアラインメント情報を抽出することができる。また、配列情報から検索することも可能となっている。
図 4.2.5.1 Rfam の検索画面
図 4.2.5.2 RNAdbの検索画面

RNAdb(http://research.imb.uq.edu.au/rnadb/default.aspx, Ken C Pang et al., Nucleic Acids Research, 33,D125,2005)は哺乳類(mammalian)のncRNAのデータベースであり、理研とKarolinska Institutesが協力し、IMB(Institute for Molecular Bioscience, University of Queensland)が運営しているデータベースである。実験的に証拠のあるncRNA(tRNA、rRNA、spliceosomal RNAは除く)を800以上登録している。そのうち2/3はmiRNAかsnoRNAである。のこりのほとんどは機能未知であるが、発生制御、疾患関連、刷り込み等々に関連したものがある。検索を行うと、GenBank accession numbers、species、references、chromosomal location、transcript length、splicing status、conservation notes、function、disease associations、antisense relationships、imprinting statusとtissue expression patternsについて検索結果が帰ってくる。またFAMTOM2やH-Invitational DataBaseのcDNA配列をもとに推測した20,000のncRNA配列が登録されている。データベースの検索画面は次図のようであり、キーワード検索、Blast検索に対応している。
4.3 解析ツール

細胞内で発現している RNA の大部分はタンパク質をコードしない RNA である。これらの中で主な成分である ribosomal RNA や tRNA、RNaseP などは古くから解析が進んでいたが、それら以外の RNA に関しては、その生理的な意味が不明のまま精査されることがなかった。近年、特に短鎖 RNA に関して遺伝子の発現制御などに非常に重要な役割を担っていることが明らかになってきたことから、単なる RNA のジャンクとして考えられてきたタンパク質をコードしない RNA が、生体内で何らかの機能を示している可能性が示唆され、実際に多様な機能性 RNA の存在が報告されるようになってきている。これらの機能性 RNA の鎖長の範囲は非常に幅広く、通常の mRNA と同程度の長さから、わずか 20 塩基程度までと多岐にわたっている。現在多くの研究者の興味対象になっているものは短鎖の機能性 RNA (microRNA など)であるが、これらの機能性 RNA の探索や検出は、鎖長と発現量の点から多くの困難を伴っているのが現状である。

以下に、現在までに報告されている機能性 RNA の検出・探索方法に関して報告する。

4.3.1 ハイブリダイゼーションによる探索・検出

タンパク質をコードしていない RNA として同定された RNA 分子が生理的に機能しているかどうかを探る上で、その発現の組織特異性や時期特異性を知ることが大きな手掛かりとなる。これらを確認する手法として、組織や細胞から得られた RNA を基にしたドットプロットやノーザンプロットなどによる目的 RNA の検出が多用されている。更に解析対象となる RNA 分子種が多い場合には、DNA Chip 技術を利用したマイクロアレイ解析が検討されている。例えば Ambion 社（アメリカ）では、microRNA の検出用に 200 種程度のプロープ用オリゴを set にして供給し、array を作製できるようにしている。また標識キットとの組合せにより microRNA の検出を可能にする系を提供している。
図 4.3.1 Ambion 社 mirVana™ miRNA Labeling kit を用いた miRNA 発現解析

現時点では、機能性 RNA の解析に用いるプローブのデザインは研究者に依存している場合が多い。すなわち、microRNA 配列をタンデムに連結した配列や microRNA 配列に非特異的配列を付加したもの、更に前駆体である pre-miRNA 配列に対応する 45-60mer のオリゴプローブなどの報告例がある。問題点としては、miRNA と pre-miRNA が共にハイブリダイゼーションされる可能性が高く、真に機能している miRNA 発現量を特異的に計測している保証がないことである。

後述される Affymetrix 社 Tiling array を用いれば、transcript の大まかなサイズがつかめるためこれらの問題を解決するが、高等生物の全染色体についての網羅的解析が可能になるまでには、まだ数年を要する。

検出に際しては、前述のように microRNA は短鎖 RNA のため標識効率が悪く、これまでの報告を見る限り効率の後がうかがえる。たとえば microRNA の両端に、RNA-DNA hybrid adaptor をライゲーションし PCR 増幅した報告や、5'端に T7-promoter 配列つきの adaptor をライゲーションし、in vitro transcription 反応にて増幅し蛍光標識ターゲットを調製した報告などがある。これらアダプターライゲーション法では microRNA とのライゲーション効率が低いことが問題である。結果、検出感度は各研究機関でかなり聞きがあるのが実情と思われる。ただ、2004 年に報告された論文（RNA,10:1813-1819, PNAS
101(26):9740-9744）では、total RNA 5 - 7 µg から標識を行い microRNA の検出を行っていることから、今後の array による検出系でも同程度の量の total RNA を用いた検出系の開発が進められるものと思われる。

高感度検出のためには、感度向上のための工夫を施したアレイ基板の開発と検出機器の性能向上が必須となる。アレイ基板としては、ここ数年種々の改良が試みられ、表面に三次元構造を有するタイプ、反射塗強膜を塗布したタイプなどは一定の効果は見られるようであるが、更なる改良が必要である。昨年秋、東レ(株)が表面に微細柱状構造配列体を有する基板を開発し、従来基板に比し感度が 100 倍高いと報告している。

なお、発現部位の同定も含めた発現情報を得る上で、in situ hybridization の利用も行われている。

4.3.2 シーケンスによる探索・検出

発現している RNA がタンパク質をコードしているかどうかに関しては配列情報が必須であるため、RNA を cDNA に逆転写した後ベクターにクローニングして配列を決定する手法が用いられる。

一般的に、機能性 RNA は一部を除いて鎖長が短く polya 配列が結合していないものが多いため、短鎖 RNA 画分を分取しリンカー配列を結合して逆転写を行うなどによりクローニングし配列決定する方法が多用されている。インスブルック大学の Alexnader Huttenhofer は、experimental RNomics という方法で新規の small nonmessenger RNA の解析を行っている。この方法では、まずモデル生物における低分子 RNA 画分（20-500nt の RNA 画分）を変性ポリアクリルアミドゲルにて分離・精製した後、polyC を 3' 末端に付加して逆転写し cDNA ライブラリーを作成する。その後、ランダムなシーケンスと多数のクローンがスポットされた filter 上でのハイブリダイゼーションによるクローンの選択・シーケンスの組み合わせにより異なるクローンの同定を繰り返していく。最終的に発現の組織特異性や発現量などをノザンプロッティングにより解析して、機能性 RNA としての確認を行っている。この手法により、多くの boxC/D 型 snoRNA が同定されている。

また、ゲノム配列が決定された生物種に関しては、ある程度遺伝子の予測ができるようになって来ており、Lynx Therapeutics 社(アメリカ)で完成された MPSS(Massively Parallel Signature Sequencing)技術がその網羅性、感度面で有用と考えられる。MPSS 技術は、解析対象となる DNA 断片を個々にマイクロビーズ上に固着化して、数百万個のオーダーのビーズ集団をまとめて解析することができる（図 4.3.2 参照）。1細胞中に発現していると推測される数十万个の mRNA 分子について十分網羅的な発現解析が可能である。この方法を利用して、17-20 塩基の配列情報 (signature) を一度に大量に決定するのだが MPSS である。
MPSS により得られる Signature 配列とその出現頻度から、サンプル中の各遺伝子について種類と発現量の情報をそれぞれ得ることができる。100 万個以上のピース上の Signature 配列を決定するため、細胞あたり数コピーというような低発現の遺伝子から、数万コピーという高発現のものまで、広いレンジで高解像度の遺伝子発現情報を得ることができる。また、得られる発現データは Signature の配列およびその頻度であるため、複数のサンプル間のデータ比較やデータベース化も容易に行なえる。

また、同一生物種の複数サンプルを解析した場合に個々の Signature 配列（遺伝子）に対して差が有意であるか p-value を求めて判定をすることができる。例えば、p<0.001 であれば、30-40 tpm の遺伝子でも 2 倍の発現差を有意として取り扱うことができ、200 tpm 程度の発現量の遺伝子は 40% の差を確かなものと考えることができる。

そのため、MPSS 技術は比較的低発現のものが分かなる機能性 RNA の配列情報を取得する上で有効な手段になる可能性が高い。Lynx 社では図 4.3.3 に示すような方法で small RNA のクローニングを行い、MPSS による解析を進めている。

この方法により、発現している small RNA の 5'から 17-20 塩基の配列情報を獲得することができる。また、17-20 塩基の配列情報があれば、大部分はゲノム上に一致に同定すること
とが可能であるため、例えばシロイヌナズナにおいては、配列の出現した部位とその発現量（100万 tpm に換算）を図 4.3.4 のようにゲノム上にマッピングすることが可能である。

Scheme for Small RNA MPSS Library Construction

![Scheme diagram](image)

Normal MPSS steps, including PCR amplification, bead loading, and bead sorting. The MPSS sequence of small RNAs starts after the GATC resulting from SfN1 digestion.

図4.3.3 MPSS解析用small RNAのクローニング手法
Small RNAs From Arabidopsis Flowers

![Small RNAs From Arabidopsis Flowers](image)

図4.3.4 シロイヌナズナの短鎖RNAのゲノムマッピング

なお、mRNA を対象に polyA からの逆転写を行い cDNA 合成してライブラリー作製する（EST や完全長 cDNA ライブラリー作製など）という一般的な方法においても、タンパク質をコードしていない機能的な RNA の探索が可能である。例えば理研の林崎グループで進められているマウス完全長 cDNA プロジェクトでは、polyA 由来であるにもかかわらず、タンパク質をコードしていない RNA 分子が多く見つかっていることが報告されている。

【参考文献】

4.3.3 マススペクトロメトリーを用いた探索・検出

ハイブリダイゼーションや RNA の逆転写などでは、RNA 自身に行われる修飾情報を失ってしまうため、RNA をそのままの状態で解析できれば情報を失わずにすむ。これを可能にしているのが質量分析を利用した RNA 解析法である。

質量分析はプロテオミクス研究で大きな貢献をしており、微量ペプチドを破壊することなくイオン化する大々的イオン化法として、マトリックス支援レーザー脱離イオン化 (MALDI) 法とエレクトロスプレーイオン化 (ESI) 法がある。しかし、RNA は酸性分子であるため、プロトン付加イオンとして感度良く測定することが難しい。液体クロマトグラフィーから溶出した試料を高電圧に印加されたスプレーノズルの先端から、シースガスの助けを借りて噴霧することで、イオン化した分子を気相に取り出す ESI 法を用いると、RNA はリン酸塩基が解離したマイナスイオンを生じ検出できる。本法の変法であり効率的にイオン化を行うため、溶媒の流速をナノフローに落とし、スプレーノズルの先端を検出器側に接近させたナノスプレーイオン化法が高感度化に貢献している。

一方、生体成分に含まれる微量 RNA の質量分析を行うためには、単離精製技術の確立が
不可欠である。東大工学部 鈴木らは、目的の RNA をカラムで単離・精製後、RNaseT1 による断片化、カラムによる分離を行い、ESI によるイオン化後、MS により質量分析を行うことにより、短鎖 RNA の解析を進めている。彼らのスキームは、①単離下 RNA の全体の分子量を正確に測定する、②RNA に含まれる修飾の種類を決定するため、LC/MS によるスクレオシド解析を行う、③塩基特異的リポスケレアーゼにより消化したオリゴヌクレオチドを解析することで、RNA 修飾を含む RNA 断片の解析を行う、④各 RNA 断片に含まれる修飾の位置は LC/MS/MS 解析により、プロダクトイオンを解析することにより帰属する、という流れである。この流れにおいて彼らのグループでは、目的 RNA の単離のためには、対 RN に相補的な DNA プローブを樹脂に固相化したカラムを用意し、そのカラムに RNA 溶液を循環させること (チャプレットカラムクロマトグラフィー) により目的 RNA の単離・濃縮を行っており、この時異なる DNA プローブを固相化した別々のカラムを直列的につなぐことにより、一度に多数の目的 RNA の単理を行うことに成功している。また、単離・精製した RNA 分子を、塩基特異的リポスケレアーゼで片断化し分離する系に関してても、高分離能を持つカラムを選択・決定している。更に ESI によるイオン化に関しても、(株) 坂口技研と共同でステンレス製のプレーヤーを開発し、イオン化効率を向上させると共に安定な測定を可能にしてきている。

更に、東大工学部 鈴木らは、RNA マスフィンガープリント法を開発している。本法は、データベースに登録されている RNA 配列を in silico で G 特異的に切断した仮想的な分子量リストを作成する。一方で、実際に単離した RNA を G 特異的切断酵素 RNaseT1 で消化した各 RNA 断片の分子量を測定し、測定分子量リストと仮想分子量リストの類似性を評価し、スコア化することで同定する。しかし、RNA はその構成成分が AUGC の 4 種類と少なく、分子量にバリエーションが少ないと、全く他の情報がない状況下で分子量セットだけから RNA を同定することは難しい。そこで、MS/MS 解析を行い、各 RNA 断片のプロダクトイオンの情報をデータベースの検索に導入、かつアルゴリズムの開発も行われている。本手法が確立され、ゲノム配列から直接 non-coding RNA を同定することや、更には RNA 修飾の帰属も可能になることが期待される。

4.3.4 リアルタイム定量 PCR による検出

機能性 RNA は必ずしもその発現量が高いことから、ハイブリダイゼーションなどの方法では検出が難しい場合がある。このような RNA 分子に関しては、リアルタイム PCR を用いた検出系が利用されている。しかし、穂長の短い microRNA に関しては適応が難しく、microRNA の前駆体 (pre-miRNA) 解析に用いた報告はある。この中で、ノーザンプロット解析での成熟型の microRNA 量と、対応する pre-miRNA のリアルタイム定量 PCR 結果に相関があることが示されている。しかしリアルタイム定量 PCR では、機能性 RNA である microRNA と直接的機能を有さない pre-miRNA の相対量比較是不可能であり、前駆体定量の意義は現在のところ不明である。
【参考文献】

4.3.5 Invader 法による検出
Invader 法は Third Wave 社（アメリカ）により開発された技術であり、現在は SNP の検出系として利用されている。図 4.3.5 に示すように invader oligo を用いて特定配列の認識を行うと共に、そのとき切り出される fragment を利用して更に蛍光基を切り離すことにより、非常に高感度かつ High Throuput に検出を行う系である。Third Wave 社では microRNA の検出にも利用できるように、図 4.3.6 のようにこの系の改良を行っており、50-100ng total RNA、もしくは 1,000 細胞程度のライセントからの解析が可能であると報告している。

図 4.3.5 Invader 法の原理図
図 4.3.6 microRNA 検出用 invader 法模式図

4.3.6 Ribozyme を用いた検出

ポー大学(ドイツ)の Michael Famulok らは、microRNA 相補的な配列を含む ribozyme とクエンチャー付蛍光プローブを利用することにより、特定の microRNA の発現を高感度に検出する系を開発している。本手法は、シグナル増感により標準的な molecular beacon 手法より 1 オーダー感度が高く、in situ や in vivo 解析への適応のための改良がなされつつある。

【参考文献】

以上、現時点での機能性 RNA の主な解析ツールを概観した。microRNA の網羅的探索技術としては、MPSS や Tiling array が有望と思われるが、まだまだ解決されるべき課題が多い。mRNA 分解産物など実験上のアーティファクトを判別し、精度の高い microRNA 探索のためには、RNA の二次構造を考慮したアライメント作業や同定が不可欠であり、バイオインフォマティクスツールの拡充が必要である。
4.4 RNA合成技術

4.4.1 核酸合成概論

核酸合成は天然型または非天然型ヌクレオチドのリン酸エステル結合部を構築することによって行われる。この概念はDNA鎖合成とRNA鎖合成に共通であり、化学合成法としてこれまでにジエステル法、トリエステル法、ホスファイト法、アミダイト法、H-ホスホネート法などが開発された。このうち、合成収率などの点から実用性に優れるアミダイト法、H-ホスホネート法が現在の合成法の主流となっている。また液層で合成する方法と固層合成を行う方法があり、比較的長鎖のヌクレオチド合成には固層合成法が採用される場合が多い。

一方で酵素を用いた生化学的合成法は、その特異性の高さから、特に難しいRNA合成において需要がある。しかしながら生化学的合成法では産物中に生物由来の材料である酵素が含まれることから、医薬品などへの応用は難しい。したがって、今後のヌクレオチド合成はRNA合成を含めて化学合成法を進化させることで行われていくであろうと考えられる。

下に代表的な化学的核酸合成法であるホスホロアミダイト固層合成法の概略を示す。

![Synthesis of DNA](image_url)
ステップ1: ドリチル基の除去
リボースの5位の保護基であるジメチルトトリチル基をはずす。

ステップ2: 塩基の結合
リボースの水酸基がリン酸ヒドロキシルアミド誘導体である2番目のヌクレオチドを、脱トリチル化された1番目のヌクレオチドの5位水酸基に塩基触媒を用いて結合させる。

ステップ3: キャッピング
未反応の水酸基をアセチル化することによって3番目のヌクレオチドを結合させる次のサイクルに関与しないようにします。通常2%位が未反応物となる。

ステップ4: 酸化
2つのヌクレオチド間の結合を、ヨードを用いて酸化して3位のリンから5位のリン酸エステルに変換する。

図4.4.1 ホスホロアミダイト固層合成法の概略図

医薬品への展開においては、ポリヌクレオチドの材料となるヌクレオチドモノマーの由来も重要視される。すなわちヌクレオチドは化学合成で作られる場合とデオキシリボヌクレオチドであればサケ白子DNA由来の分解物、リポヌクレオチドであれば酵母由来のRNAの分解物などによって生物的に供給される場合があるが、医薬品への生物材料のコンタミネーションが将来的になんらかの問題を引き起こす可能性を考慮すると、今後のヌクレオチドモノマーは化学合成法によって供給していくことになるであろう。

4.4.2 RNA合成法
RNAの合成は基本的にはDNA合成と同様の方法で行われる。ただし、リポヌクレオチドにはリン酸結合に関与する3'および5'-OH基に加えてフリーカーの2'-OH基が存在するため、これを保護しながらポリヌクレオチド合成を行う必要があり、難易度が高い。

さらに述べたように酵素を用いた生化学的合成法は特異性が高く、難易度が高いRNA合成においては利用価値が高いことから効率のよい生化学的合成法について多くの研究が行われている。

株式会社iGENEおよび独立行政法人産業技術総合研究所の多比良らは、同社取締役兼東大学の鈴木教授が開発したsiRNAの新規転写合成技術を産業化している。この技術は図4.4.2に示すように、まずヘアピニ型RNA(short hairpin (sh)RNA)を試験管内転写合成し、転写後にトリミングを行うことでsiRNAを調製する。ヘアピニ型RNAから調製されたsiRNAは原理的に全てが2本鎖であるため、従来のセンス鎖とアンチセンス鎖をアンチリーピングして作製する2本鎖RNAよりも合雑率が格段に高い。また各鎖の自由エネルギーが低く、分子内で構造を取ってしまいるために2本鎖化できないような配列に関してもこの方法
が応用できる可能性がある。

T7 RNA ポリメラーゼによる試験管内転写反応では、転写する RNA をコードする領域は 1 本鎖でよく、プロモーター領域のみが 2 本鎖であればよいということが知られている。したがって、同社の方法ではプロモーター領域のセンス鎖に相当するユニバーサル DNA と shRNA をコードする DNA の 2 本を用いて転写合成の構型とする。ShRNA には効率の良い GGG 配列を転写開始部位に配置し、センス鎖に続き 7 塩基からなるトリミングループとアンチセンス鎖、最後に 2 塩基のオーバーハングを付加する。化学合成 siRNA では、3'未端オーバーハングの 2 塩基を DNA の TT にする方法が一般的に広く用いられるが、最近では、3'末端オーバーハングが TT であることが特に重要ではなく、化学合成の都合上塩基部位の保護基が必要のない T がコスト的にもメリットがあるという見方が大勢を占めている。本法ではトリミング反応の都合から、センス鎖のオーバーハングが AG であり、アンチセンス鎖のオーバーハングが AU となっているが、実際にオーバーハングが TT の化学合成 siRNA と本法の siRNA の活性を比較したところ、オーバーハングの配列は RNAi の活性に影響を与えないことが確認された。

また siRNA の最適な長さについては、Tuschi らの報告によれば 21-23 mer ということになっているが、Bohula らの結果によると 21-27 mer までの長さでは活性が変わらない事が報告されている。IGENE では 25 mer を製品としている。

shRNA は転写後に自発的にヘアピン構造を形成するため、高濃度のマグネシウム存在下で G 特異的リポネクターゼ(RNase T1)で限定分解することによって、トリミングループの 2 ゲルの G で特異的に切断される。また同時にセンス鎖 5'末端の GGG 配列もこの操作で除去される。この方法では RNA の配列に関わらず、shRNA から dsRNA に効率よく変換される。また、転写後には shRNA の 2 領域は全て多量体分子が生じるが、これらもトリミングによって全て dsRNA に変換されることが確認されており、一方で、この条件においては 2 本鎖部分の G は RNase T1 によって切断を受けていないことがわかる。精製は siRNA を未変性ポリアクリルアミドゲル電気泳動で切り出すことによっている。
図 4.4.2 iGENE による dsRNA 合成法

また Ambion 社は City of Hope National Medical Center and Beckman Research Institute から生化学的な dsDNA 合成技術を導入し、研究用に全世界で販売を行っている (図 4.4.3)。

図 4.4.3 Ambion による dsRNA 合成法

一方でこれらの生化学合成法では、生産された RNA の中に酵素をはじめとする生物由来
の物質がコンタミする可能性があることや、ポリメラーゼの特異性が高いために人工的に修飾した塩基を導入することが難しいといった欠点がある。これを補う方法として、化学的な RNA 合成法が検討されている。しかしながら、化学的な RNA 合成法にはいくつかの困難が伴う。リボヌクラーゼには、リン酸化や縮合反応においてリン酸化を受ける部位が複数存在し、選択性のリン酸化のためには不要な反応部位に対して保護基を導入することが必要となる。

アデノシン、グアノシン、シチジンの塩基部にはアミノ基があり、これらのリン酸化を抑制しなくてはならない。塩基部の脱保護はリボヌクラーゼのリン酸化およびオリゴヌクラーゼの合成が終了した後に行われるので、これらの過程において安定な保護基を用いる必要がある。弱アルカリ下で除去が可能な保護基として、ペンゾイル基などのアシル基が利用される。一方、グアノシン、ウリジンは塩基部にカルボニル基を有するが、縮合剤の量を調節することにより、通常は保護することなくオリゴヌクラーゼ合成を行う。

リボヌクラーゼの糖部位には 5'、3'、2' の 3 つの水酸基が存在する。3'および 5'-OH 基の保護基としては、リン酸化反応、縮合反応の過程に応じて他の保護基を分解することなく選択性に除去することができるものでなくてはならない。これらのついては DNA 合成でも同様の課題であり、多くの研究成果があげられ、実用化されている。5'-OH 基の保護基としてはトリフェニルメチル基およびその誘導体であるモノまたはジメトキシトリチル基がもっとも一般的である。これらの保護基は酸のほか、無水条件下で臭化亜鉛によっても脱離できる(Reese, C.B. et al., J. Chem. Soc., Perkin Trans. 1, 4875, 1975)。

先に述べたように、RNA には DNA と異なり、2'-OH 基が存在するために、単純なヌクラーゼの連続では失った目的を合成することは不可能である。したがって、RNA 合成時には 2'-OH に保護基（シリル基）を導入して、リン酸結合を完成させたのちにこれを離脱させることが行われる。

最初に用いられた、酸で脱離可能な保護基はテトラヒドロピラニル基であり、その後メトキシテトラヒドロピラニル基、テトラヒドロフランニル基が改良版として用いられた。しかしながら保護基の導入に数工程を要していたため、2 段階で導入できるジクロロ-1,1,3,3-テトライソプロピルジシロキサンを次に用いられるようになった(Markiewicz, J. Chem. Res. (M) 181, 1979)。

解決するために様々な工夫がされている。

保護基の転移を防ぐための方策としては、まず純粋な 3-O-ホスホアミダイト体を得ることが必要である。2,4,6-コリジンを塩基とし、N-メチルイミダゾールを触媒に用いてクロロ（2-シアノエトキシン）（ジイソプロピルアミノ）ホスファインで反応を行う方法が知られている。この方法では 99.95%純粋な 3-O-ホスホアミダイト体が得られるとされている(Scaringe,S.A., Nucleic Acid Res., 18, 5433, 1990)。更に結合反応中の転移を防ぐことが重要であるが、課題として残されている。

またメタノール性アンモニア(Hayakawa,Y.,Tetrahedron, 57, 8823, 2001)やエタノール性アンモニア(Lyttle, M. H., Nucleic Acid Res., 24, 2793, 1996)を塩基の脱保護処理に用いると、tBDMS 基が同時に脱離することを防ぐことができると報告されている。一方、tBDMS 基の脱保護には Bu4NF や Et3N・3HF を用いることにより、2'-5'リン酸ジエステル結合法への転移を抑制することも可能です報告されている。

このような保護基の開発と同時に、位置選択的な保護基導入方法についても研究が行われている。2 位への選択的な保護基導入のための技法として産業総合研究所の古澤清孝らは以下の方法を開発した。すなわち、二官能性化合物を用いて 3 位および 5 位の水酸基を位置選択的に保護した化合物(2)を作る。この化合物は各種合成条件に対して安定である。この化合物に対して 2'-O-シキル化を行い、選択的に 2'水酸基を保護した化合物(1)を容易に入手することが可能となった。

図 4.4.4 産総研による RNA 合成時の 2 位水酸基保護法

保護基を有するスクレオチドを用いて RNA 鎖合成をおこなった場合、更に 2 つの問題が発生する。保護基は空間的に嵩高いため、ポリスキュレオチドの合成効率が落ちる。更に大きな問題はリン酸転移が起こる可能性である。これは合成の最終段階で保護基をはずそうとした場合に、酸性処理中にリン酸基の位置転移が起こることによる。ポリウリジル酸を pH2.2 で 25℃、20 時間処理した場合、3'-5'リン酸ジエステル結合が 6%転移したという報告がある（Morgan,MA et.al., Nucleic Acids. Res. 23, 3949, 1995）

70
【東京工業大学 関根光雄 ヒアリング】
現状の RNA 化学合成には多くの問題が残されており、純粋な合成産物を得られる鎖の長さの限界は 50 mer 程度がやっとではないか。世界的には 100 mer の RNA 鎖合成を報告している研究者もいるが、その合成産物の純度計測を行っていない。計算上、100 mer の合成産物には 5%の残基に変異が起こっている可能性があり、もしそうな状態であれば、純粋な成功とは言え難しい。

Dharmacon, Inc.(IL, USA) では 2 末端の保護に orthoester (2'-ACE) を用いることにより、安定した RNA 合成を行うことが可能になったとしている。この基は弱酸性（pH3.8）で脱保護する事が可能なため、RNA の分解を起こす最も大きな原因の 1 つであった、強酸によるリン酸ジエステル結合の分解を最小限に抑える事ができる。また 2 末端が ACE で保護された RNA は、RNA の二次構造による合成の障害を最小限にできる、新しく合成された RNA 鎖を、RNase による RNA 分解から守ることができる、などの特徴がある。更に合成過程において揮発性バッファーを使用することにより、2-6 塩基程度の短い RNA 鎖を高い収率で脱塩・脱保護する事が可能になったとも報告している。しかしながら、この保護基をむつアミダイトは高価であり、価格的に in vitro 実験レベルの試薬程度にしか対応できないところが難点である。

なお、RNA の純度測定法は鎖長が長くなるほど難しい。通常、RNA の純度検定には HPLC 法が用いられるが、測定ピークの微妙なずれを検出することは困難である。このことは多数の塩基中のほんの数塩基の変異がある 2 つのピークを見分けることが難しいことを意味する。また LC-MS による分子量測定法では、基の位置変換を検出することはできない。RNA の高感度な純度検定法は今後の大きな課題であり、例えばイオン交換樹脂と疎水性樹脂を使った複合的な HPLC による測定などを試みる必要があると考えられる。

4.4.3 修飾 RNA 鎖の合成
【東京工業大学 関根光雄 ヒアリング】
RNA 合成の最大の難点はその不安定性の克服にある。RNA 合成が固く、DNA よりも多様な産業上の用途を考えることができ、天然型の RNA は安定性に欠けるため実用的な応用是不可能であろう。RNA 合成が不安定な因子として、RNase 酵素による直接的な分解作用も問題であるが、化学的には 2'-OH への攻撃によって鎖構造が崩壊に至ることが不安定性の原因である。したがって RNA 合成の課題のひとつは RNA の機能を残しつつ、構造を変えてこれを安定化することである。実際に 2'-OH の水素基をメチル化して安定化をもたらす 2'-O Me 化法がほぼ確立されており、効果も確認されている。ただしこの方法は特許で強く守られており、今後の研究は別の置換基導入をいかに行うかに向けられている。2'-OH の変換は RNA を安定化させるだけでなく、天然型の RNA の機能をより強化することも可能であると考えられる。Kauffman J.らは 2'-O-methyl RNA を含んだ dsRNA は未修飾の dsRNA と比較してリポスクリアーゼに対して安定であり、遺伝子発現抑制効果が 5
日間持続していることを報告した（Nucleic Acids Res. 31, 2705, 2003）。同報告で使用された RNA はドイツの BioSprings 社製であり、ドイツでは他に Greiner- bio-one からも 2'-O-methyl RNA が供給されている。

RNA 合成は酵素を用いた生化学法であればほぼ完全な合成が可能であるが、生化学法ではこのような修飾された塩基を用いることはできない。一方、化学合成では修飾塩基を使って機能を向上させた修飾 RNA を合成することができる。化学合成法の研究者によって様々な修飾塩基が開発されている。関根らは O-CH₂CH₂CN の導入を考えている。この合成法では合成パーソニズムとしてアクリロニトリルを使うことができ、他の基を導入する方法（銀触媒、置換基にシアン使用など）よりも安全性が高いと考えられる。置換基が合成後にも脱落せず、RNA としての機能・効果が高い基をいかに簡単に導入できるかが今後の研究のターゲットである。また安定化の向上策として、人工塩基への変換も行われている。これらの人工核酸の合成法は従来の天然型核酸合成法に準じており、またその長さも siRNA 用途ならせいぜい 30 mer なので合成自体はそれほど難しいものではないと考えられている。

RNA の安定性を高める技術としてはまた、5 炭環内部で 2 位から 5 位へ架橋を作ることによって安定性をあげる試みが行われている。デンマークの J. Wengel がこの合成、合計 17 工程を最終合成効率 70%で成功させ、産生量はすでに市販されている。日本では三共の小泉誠らが同様の研究を行っている。

しかし、このような修飾核酸は万能というわけではない。siRNA の場合、ターゲットの切断部位を 2'-OMe化すると機能を失ってしまうため、3'端や 5'端側のいくつかの塩基についてのみ 2'-OMe 基を導入する。一方でどのような修飾を行っても、鎖内に天然 RNA である塩を攻撃されて安定性は低下する。siRNA のように天然型の RNA を使わざるを得ない医薬品の場合は DDS でこれをカバーする必要がある。ただし、チップのような診断用途の場合には生体内での安定性を考える必要がないので、RNA の構造そのものを変えることができる。ただし、根本的改革がないと研究は先へ進まない状態にある。

また、これらの修飾 RNA 合成はアンチセンスなどの開発過程の知見を流用していることが多く、すでに特許化された技術の応用である新規技術の開発とは言い難い側面が多い。例として、Alnylam US の Dr. Mano Manoharan(vise president、元 ISIS 社)は ISIS で行っていたアンチセンス合成をすべて RNA 合成に置き換え、転職後 1 年間で基本的な特許を押さえてしまった。

4.4.4 RNA の商業生産

海外では Sirna Therapeutics、Alnylam Pharmaceuticals、Acuity Pharmaceuticals などが siRNA を用いた医薬品開発に乗り出しており、Sirna Therapeutics、Acuity Pharmaceuticals はそれぞれ加齢性黄斑変性症をターゲットとして Phase I 臨床試験を行っているという情報がある。加齢性黄斑変性症は眼疾患であり、RNA 医薬の弱点である全
身投与時の低安定性を補償するために点眼薬として開発を行っていると考えられる。

これに対し、Alnylam Pharmaceuticals は 2004 年 11 月に高脂血症治療用 siRNA の臨床開発予定を発表した（2005 年末までに前臨床試験実施を計画）。この根拠として RNA の 2'-O-methyl 化、phosphothioate 化によって分解耐性を向上させたこと、核酸配列にコレステロールを結合させることにより、ヒトアルプミンへのトラップ（Kd 1・M）によるステルス化を行ったことをあげている。動物を用いた基礎試験ではラットでの T1/2 が 6 分から 95 分へ、CL が 17.6 mL/min から 0.5 mL/min へ改善したこと、またマウスに ApoB-Chol-siRNA を 50 mg/kg 投与することにより、血漿 ApoB 量を 70%抑制したことを示した（Nature 432, 173, 2004）。

Sirna Therapeutics, Alnylam Pharmaceuticals は自社で RNA 合成を行っている可能性が高いが、Acuity Pharmaceuticals は Aveca Biotechnology Inc.と提携を結び、siRNA 合成を委託する契約を結んでいる。

一方、RNA は不安定である上に合成用の試薬が高価であり、合成による収量も悪い。したがって DNA 合成に比べて RNA 合成は約 20 倍の費用がかかりと概算される。製品としての販売目的で合成する場合にも、研究目的で試作する場合にもコスト面からの制約が大きいことが問題となっている。RNA の大量（10 g）合成は Aveca 社が行っている。彼らは固定合成法をとっているが、大量合成においては合成効率に規模効果があり、関根が ABI の核酸合成機で少量合成する場合に 20 当量を必要とする反応を、1.5 当量で行っている。

理論的には 1.2 当量まで原料を削減できるはずであるが、そのためには樹脂や縮合活性化剤の応用展開が必要である。RNA を小スケールで早く、コストパフォーマンスよく合成する方法が必要と考えられている。

現在合成 RNA の商業用途としては siRNA の医薬品としての適用が中心に考えられている。合成 RNA の今後の用途展開としては、単独の RNA 分子を用いた医薬品の開発のほかに RNA チップが考えられる。RNA は DNA よりも塩基識別能力が高く、修飾によってより精度が高い構造化することが可能である（例えば 2^iU は一般に問題になる A-U 誤対を起こさない）。DNA よりも高価であるが、ハイブリット効率が非常に高いので配列が短くて済むと考えられ、コストパフォーマンスが悪いとは限らない。

DNA 合成においても、実は長鎖合成では塩基が酸に攻撃され、変性が起こっている。そのため人工 DNA から RNA を作ることは普通はしない。関根は塩基部無保護法によって 30 mer 程度のDNA合成を成功させており、DNAチップのプローブとして使用を試みている。

Affymetrix 社の DNA リソグラフィー合成は 20 mer を保護基で合成しているが、合成効率低下やリンカーの切断から考えると基盤上の精密なプローブの割合はきわめて低いかずである。これに代わる RNA チップが望まれる。

【日本新薬株式会社　矢野、大木他　ヒアリング】

RNA 合成の肝は 2'-OH の保護である。従来 tBDMS 基が用いられてきたが、これは安価
一般的である。最近、Darmacon 社により ACE 基、TOM-S 基など新しい保護基が出てきた。これらは高品質であるが大変高価であり、試薬レベルでの使用にとどまり、産業上の利用は難しい。

海外の大きな RNA 合成企業としては Aveda 社、Proligo 社があげられる。これらは巨大な化学メーカーの傘下であり、過去にアズセンス研究を行っていた経緯がある。Aveda 社、Proligo 社は GLP レベルでの合成ができる。Darmacon 社は 10g の受託合成を譲り受けているがこれが限界かと思われる。Aveda 社は施設は大きいが従来法で合成しているため、純度が低く収率が悪そうだ。今の人、日本では大量合成（グラムスケール、純度 80%以上）ができる会社はない。

Acuity、SiRNA 社が臨床試験で用いている siRNA の純度は 80%程度ではないかといわれている。医薬に必要とされる純度はかなり 80%以上ではない。そのためのカップリング、総合効率は 100%近くないという。これらの条件を満たすためには 2'-OH 保護基の選択は非常に重要であり、この機能によって合成 RNA の純度は頭打ちとなる。純度が高い RNA は当然収率も高く、スケールアップ、コストダウンを考えると高合成効率は産業化に必須である。つまり、RNA 合成は原料となるアミダイタにいかに質がよいものをつくるかがカギとなる。

日本新薬では保護基の改良により、DNA なみの純度と収率で 40mer の RNA 合成を行うことに成功した。まだベンチスケールで、polyU での合成であるが、他の塩基を用いた検討も行っている。コスト的にも現行の高性能品に勝っている。これに総合剤、担体の最適化やアミダイタ体の合成コストの削減を検討している。できた RNA ポリヌクレオチドの精製は HPLC で行う。長さが 25mer 程度であれば、1-2 塩基程度の長さの違いは、HPLC のピーク分離は可能である。50mer のように長くなると判別が難しくなる。

最近、DNAPack™ PA-100 column（DIONEX 社）という核酸精製用のカラムキットが販売されている。これは精製効率に定評があり、学会のスタンダードとなったと言えよう。今後は少なくとも実験レベルではこれを利用した精製が行われることになろう。

一方、医薬品として考える場合、10g 単位で RNA の合成が必要となる。また規格化のために合成された配列そのものを決定することが必要である。この配列決定には MALDI - TOF/MS を使う。ヌクレアーゼによって片方向からの塩基づつ削った断片を作り、分子量を MALDI で測定することによって配列を決定できる。

また医薬品とする場合、RNA を合成するのみでなく DDS 技術が重要である。日本新薬はカチオニックリポゾームを使っている。肝指向性がある糖修飾をはじめ、他の臓器指向性リポゾームも開発中である。抗体は使わず、化学修飾で汎用性を出す。また肝臓以外の臓器指向性を持たせる場合、肝臓にトラップされずに血中に循環を維持できるように、パーティークルサイズを小さくする工夫している。肝臓用の径は現在 200nm である。パーティクルの大きさを均一にするときも医薬品としては重要である。循環して臓器に到達した RNA/リポゾームを目的の細胞の細胞膜内に入れるかもポイントである。細胞によるエンドサイ
トーシスを利用するのみならず、RNA 自体に修飾をいれて細胞内に入りやすいようにしていく検討も必要である。

リポソーム製剤では封入効率も重要であるが、日本新薬では RNA 大過剰とし、Microfluidizer を用い、高圧で封入する方法をとっているので結果は悪くない。また封入後のリポソームを AFM（Atomic Force Microscope）で観察することにより、封入の有無を確認することができる。

医薬品の製剤としては凍結乾燥品の形で市場にでるが、投与液への完全な溶解性を確保しなくてはならない。リポソームが完全に再生するような製剤を作り、現在米国で実行している臨床試験にもその技術を使っている。

このような製剤に気を使っているのは in vivo での RNA の薬効が製剤処方によってまったく異なるからである。これは臨床でも動物試験でも同様である。

また安全性の点についても慎重に検討しなくてはならないが、カチオニックリポソームはそれ自身が RNA を封入し、臓器特異性を持たせることで安全性を高めていると考えている。RNA の大量投与も安全性に問題があるかもしれないので、できるだけ少ない量の RNA を目的臓器に確実に届けることが重要である。天然型 RNA のほうが、人工的に修飾したタイプより安全であろうと考えられるため、まず siRNA についても天然型で機能がもっともよいものを見出し、更に薬効修飾（持続時間など）を行うためにメリットとデメリットを考えて非天然型の修飾を行うのがよいのではないか。

日本では RNA 研究がさかんでないのは核酸合成研究者が少ないせいもある。日本の RNA 合成研究者は少なく、東工大の間根、東大の和田が有名である。世界的にもそれほど研究者は多くなく、研究者の系列は１つ２つという程度である。RNA は生化学手法の応用が可能なので、分子生物学研究は多くの研究者によってされている。しかし、医薬として考えた場合化学合成は必須であり、20mer 程度なら十分に化学合成可能であり、純度などの点で有利なため、これらは研究が盛んになるかもしれない。核酸研究はアメリカが中心であるが、核酸の中でも DNA、リポライムについて先行していた。これは RNA 合成が難しく研究成果が出にくいためである。米国に留学した日本人に RNA のテーマが与えられることが多い、その意味では日本人のほうが RNA 研究に多く携わる機会があったといえるかもしれない。

また将来技術が向上して、長い（50mer 以上の）RNA 合成が容易になれば microRNA と siRNA の比較を行うなどの研究から、RNA の医薬としての応用価値も更に高まってくるだろう。ただし、RNA の合成研究には高価な試薬が多用されるため、アカデミックのみの研究では費用面から無理がある。いろいろな技術をもった研究者や企業があつまり、関根のような方がオーガナイザーとして研究団体を作れば、日本において世界に勝る研究が可能だろう。

【北海道システム・サイエンス株式会社 橋本 ヒアリング】
現在 DNA 合成受託は海外の大手各社によって激しい価格競争が行われており、1 mer が 35 円のレベルまで落ちてきている。北海道システム・サイエンスではコスト削減によって 1 mer が 55 円まで対抗しているが、価格競争にかかわるものではないため、注文から納品までの時間やサービス対応で対抗している状況である。また海外メーカーには DNA 合成を kg 単位で受注することも可能である場合がある。

2004 年に北海道システム・サイエンスとアンジェスエムジー（株）が GMP レベルの RNA 合成について提携した。北海道システム・サイエンスは平成 2 年から DNA 合成を手がけ、国内に 18,000 の顧客を持つ国内大手の核酸合成施設である。従来の DNA 合成技術および施設を生かし、平成 15 年 12 月に生産用のクリーンルームを完成させ、平成 16 年中に生産体制を整え、平成 17 年から受託生産を開始する予定となっている。

【参考文献】
ゲノムケミストリー 関根光雄、齋藤烈編 2003 年、讲谈社サイエンティフィック
続生化学実験講座 第 1 巻 日本生化学会編 1986 年、东京化学同人

【ヒアリング対象】
东京工業大学生命理工学研究科 関根光雄
日本新薬株式会社
北海道システム・サイエンス株式会社
5. 注目すべき RNA 機能研究に関する技術・研究動向

5.1 機能性 RNA 探索技術

5.1.1 Affymetrix 社

(Santa Clara, CA URL: www.affymetrix.com, www.affymetrix.co.jp)

Affymetrix 社の製品は既に日本の中でも広く使用されており、遺伝子発現解析ツールの市場で圧倒的な地位を占めている。彼らの優位性は,
a) ユニークなマイクロアレイ製造技術により、高度な集積化が可能。現在も発展中。
b) データの評価を含めた解析ソフトウェアまでの一貫した品質管理とその向上。
c) 国家のバックアップを受けた圧倒的な研究資金力。
といったような項目に集約することができると考えられる。現在のマイクロアレイ技術の中で、遺伝子の発現量を計測するということに関して、真摯に対応してきた会社として大きく評価することができる。
そのなかでも、機能性 RNA、あるいは非翻訳 RNA (ncRNA) の発現解析にも使用可能なツールの開発が始まており、既にアメリカ国内のプロジェクトでの試用が始まっている。更に最近知られてきた、翻訳される遺伝子の中での多様な発現様式を探るためのツールも、RNA 中の配列がその制御に関与していることを考え、合わせて紹介する。

5.1.1.1 エキゾン、あるいはスプライシングの境界配列に特化したマイクロアレイについて

(John Blume, VP, Wxpression Research より、製品全体の紹介も含めて)
Affymetrix 社の製品は全て、コンピュータの回路を組み立てるシリコンウェハー上で合成され、各製品のサイズへと分割される。そのため、合成過程で使用する格子のサイズと、製品のサイズで、そこに搭載される遺伝子（プローブ）の数が決定される。一例をあげると、

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>12.8 mm²</th>
<th>96-well (x 6 mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1,354,000</td>
<td>28,561,983</td>
</tr>
<tr>
<td>5</td>
<td>6,553,600</td>
<td>138,240,000</td>
</tr>
<tr>
<td>1</td>
<td>163,840,000</td>
<td>3,456,000,000</td>
</tr>
</tbody>
</table>

のようなになる。現在の製品サイズは左上のものである。Affymetrix 社のプローブ設計は独特であり、1つの遺伝子につき10個以上の部位で設計するとともに (PM: Perfect Match)
更にその変異タイプ (MM: Mis-Match) も同時に合成するため、現状の発現解析ではかなり大量のプロープが必要になる。研究用のマイクロアレイとしては中段の 5 〜 10 m サイズのものが完成しており、アメリカ ENCODE (ENCODE Of DNA Elements: www.genome.gov/ENCODE) プロジェクトでも採用されている (後述の Tiling Array 参照)。下段の 1 〜 5 m サイズはまだ開発中のものであり、マイクロアレイを作成することは可能であるが、そのシグナルを検出するためのスキャナーの解像度を上げることが最大の難問のようである。もしこらい開発されれば、右下の数字のようにヒトのゲノムサイズのプロープを、実験可能なサイズに収めることができ現実のものとなる。彼らの予測では 2-3 年でこの領域に到達するとのことであり、ゲノムを調べるということがその言葉通りになる日も近いのかもしれない。

その前の段階として、近年の遺伝子データベースの充実により明らかにされてきた事実として、多くの遺伝子（6 割かそれ以上）にはスプライシングの変異体が存在するということがある。疾病との関連性も大きく、また発現解析にも予測不能の影響を及ぼすため、Affymetrix 社ではエキソンごとの発現解析を試みることにした。

エキソンの選び方は既知のものに加えて、EnsGene, GeneScan, TwinScan などの遺伝子予測や全長 cDNA・EST・mRNA のアラインメントからの予測も取り入れ、既知・未知（予測）のエキソンのクラスターを作り、各エキソンを同定できるようにした。ここまでやったとしても、彼らも brand-new エキソンに対応しきれないことは認識している。

マイクロアレイの設計法としては、各エキソンごとに 4 ブロープずつを設計する Exon Array, エキソンとエキソンの境界部分に 4-6 ブロープを特異性を持たせながら (25 mer にこだわらず) 設計する Junction Array がある。現状はここまでだが、最終的にはそれらのような設計上のバイアスの可能性の無い、Tiling Array へと移行していくとしている。

またこの実験法において特異な点として、これまでのターゲット（修飾ラベル）作成法とは異なり、一度 aRNA (cRNA) を増幅した後に、ランダムプライマーにより cDNA を合成し、断片化後 TdT 酵素によりラベルを取り込ませていることである。短い DNA をターゲットとすることにより、RNA の構造的問題でおいていた制御不明の要因を排除してノイズの削減を狙ったものとして評価できる。

これらのマイクロアレイを用いて各組織におけるエキソンごとの発現量測定を行ったところ、割合は少ないが数としては多くのエキソンにて、同一遺伝子中の他のエキソンとは異なる発現パターンを示しているものが検出された。特に脳と精巣にその分布が多かったようである。そのようなエキソンと遺伝子の分類を行い、GPCR (G-Protein Coupled Receptor) において優位に多く検出されたこと、また、他の遺伝子群を含めて脳において創薬のターゲットとなる遺伝子にて、特異的なエキソンの発現変異（スプライシング変異）が起きていることが明らかになった。

これらをまとめて解析すると、遺伝子全体の約 1/3 では、そのスプライシングパターンに変異が見られるようである。彼らもマイクロアレイのデータだけでは結論を導くことは難
5.1.1.2 Tiling Array の解析方法について
　
(Phillip Kapranov, Staff Scientist II による紹介)

2003年秋より、The National Human Genome Research Institute (NHGRI) などアメリカ国内の主要研究所主導の ENCODE プロジェクトが始まった。ここに Affymetrix 社は試験用の Tiling Array を収めている。その仕様は 35 bp 間隔にて幾つかの染色体分に過ぎないが、現在社内で実用している Tiling Array では、5 bp 間隔にて 10 本分の染色体（Chr.6, 7, 13, 14, 19, 20, 21, 22, X, Y）をカバーするものを使っている。ただし、pseudogenes, low complexity repeats などは除いている。この feature のまま全染色体に拡大すると、1 解析に 91 個のアレイが必要になり現実的ではない。更に多くのブローブを搭載できる改良が必要である。

もともとこれら染色体をカバーするアレイ群は、転写因子結合領域、染色体構造の変化、ゲノムのメチル化、染色体の複製開始点、などの解析を目的として、何らかのタンパク成分を介した影響評価のようなものをするため、目的とする染色体部分を大きく単離してからアレイ上で解析すること（ChIP-chip）を主眼としている。そのため、染色体ごとのアレイであったり解像度がそれほど高くななくても、実験上の問題はさほど見られない。

しかしこれが、染色体上の未知の部分から転写されてくる機能性 RNA の探索や発現解析となると、同一アレイに全染色体が乗る必要性は非常に高くなる。これについては前述の通り、解像度を上げて集積化の努力がなされている最終である。またこれまでの製品とは異なるブローブ設計となったので、そのバックグラウンド処理、有効判定に関してもアレイ構造に適した統計処理を探求し、一定の成果を上げているようである。彼らが、“Interrogating the Genome” という言葉を使用しているように、染色体そのものに対して、生物学的意味や個人の研究志向といったバイアスを加えることなく、全ての情報をありのままに引き出すことが現実の可能性として見えてきている。

彼らの現在の解析では、Encode 計画で使用している 8 のヒト細胞系列に関して、分化誘導をかけた各ステージについての発現解析を行っている。しかも前述のように未知の転写産物の存在も考慮して、RNA の抽出に際して、核と細胞質を分離し、更にそれぞれについて poly(A) を含むないで分画するという方法をとっている。データの解析を容易にするための手段ではあるが、データポイントは膨大になり、彼らの実験およびデータ解析処理能力の高さを想像させる。

その実験を通してデータの得られた染色体上の部位のうち、約半数はまだ名前の付けられていない場所(unannotated)であった。特に染色体13,Y では 70-80%が “unannotated”
にあたり、染色体ごとに特徴があった。また分画ではもちろん poly(A)なしで非常に unannotated が多かったが、おそらくことにエキソン部分に当たるものも多く存在しているようであった。これらのうちの多くは通常のタンパクをコードしている mRNA の逆録が発現することにより、本来の遺伝子の発現制御をコントロールしている可能性が考えられる。それら “novel transfrag (transcribed-fragment の略と思われる)” のうち、768 個を選び出し、RACE などの確認実験を行ったところ、イントロンに存在するもの (intronic)、遺伝子の間に存在するもの (intergenic) など存在様式は様々だったが、順次その在在が確認できているとのことである。

この Tiling Array を用いて、機能性 RNA の中でも特に配列の短い miRNA のような分子の発現解析が可能かどうかを検討したところ、このアレイというよりも、ラベル化されたターゲットの作成方法に依って短い分子で効率に問題があるため、検出が難しいであろうとの返答であった。ただし前駆体のように数塩基であれば検出できる可能性もあるとしていた。分子による Tm 値の違いなどの実験条件をクリアできることと、Affymetrix 社製品の解像度の改良が予定通り進行すれば、ゲノム全体を対象とした新たな機能性 RNA の探索技術がアメリカで進行する可能性もあり得ると考える。

この Tiling Array に関しては

Array: whole genome: human, mouse
 Human promoter array
 Model organisms: Arabidopsis, Drosophila, Yeast (pombe, cerevisiae) など。
 （備考：カスタマアレイは 20,000 ブロープから）
Software: GTRANS algorithm tool (Tiling array 専用)
 Genome browser for visualization
Assays and protocols: whole transcript assay: random primed cDNA syntes
 Chromatin IP - amplification - labeling
の様に、Affymetrix 社から供給されており、かつ日々進化し続けている。

Affymetrix 社の説明としては以上であるが、現状において日本の研究方法とは明らかに考え方は異なり、初めに測定（情報）あり、ということが見て取れる。そのためには技術どこまで進歩しなければならないかというビジョンも明確であり、かつ測定された情報をいかに処理していくかという方向性（具体的方法はツール依存だが）も考慮されている。

それに対して日本での研究を見ると、RNA 研究への貢献としては遜色なく、個人の研究者がそれぞれの個性を持って世界の第一線で活躍している。そこでは生物学的意義が第一に考慮され、その意味を説明するための情報はデータから引き出すという、研究者の目線での解析が重要視されている。この構図は先のゲノムプロジェクトにおいて、ゲノム
は欧米、cDNA は日本を含めた各国の貢献が大きく認められたのと似ているように思われ
る。
この現象の良し悪しは判断できかねるが、日本の RNA 研究の重要性・認知性を上げるた
めには、生物学的意義のみに留まることなく、生化学的・統計的に処理できるようなデー
タの出力を伴う解析技術・方法論の創出が大いに期待される。
5.2 バイオインフォマティクス支援ツール

5.2.1 microRNA (miRNA)のターゲット予測
実験的、コンピュータによる予測によって、miRNA が多数発見されている。Non-coding RNAのデータベースである Rfam (Release 5.1, Dec 2004)には1,420のエントリがあり、またヒトの miRNA として222種類登録されている（そのうち実験的に検証された miRNA は196種類である）。これらの miRNA は mRNA と相互作用することにより、遺伝子の発現に影響を与えているが、そのターゲット mRNA は多くの miRNA で未知である。そのため、これらの miRNA のターゲットを推測するインフォマティックスツールが開発されている。代表的なターゲット予測ツールとして MiRanda (Bino John et.al., Human MicroRNA Targets, PLoS Biology, 2, 11, e363, 2004)が開発されている。これらツールについての概要を以下に述べる。

5.2.1.1 Miranda (http://www.microrna.org)
Memorial Sloan-kettering Cancer Center の Anton J Enright らにより Drosophila の miRNA ターゲット予測のために開発されたツール (MicroRNA targets in Drosophila, Genome Biology 2003, 5:R1) であるが、ヒトの miRNA のターゲット予測に応用されている。そのアルゴリズムは図 5.2.1 の通りであり、mRNA の 3'UTR 領域(b)と miRNA(a)をダイナミックプログラミングにより、アラインメントした (Phase 1) のち、Vienna Library を用いて熱力学的な計算を行う。これらの結果をターゲットが進化的に保存している構造から異なるものを除く(d)。このフィルターナーは、(1) miRNA が異なれば、配列相補的なターゲット領域の数の分布が異なること、(2) miRNA は3'末端に比べ、5'末端の方が相補配列が多いこと (asymmetry)、(3) G:U の wobble base pair が5'末端に少ないこと (G:U wobbles) をカットオフパラメータとして選んでいる。図 5.2.2 は、同アルゴリズムを用いた、Vertablate の miRNA ターゲット予測のパイプラインである。
図 5.2.1
Vertebrate と Fish の 3'UTR 配列と miRNA 配列を用いて、進化的に保存されているターゲット配列を予測した結果、240 種類の配列を抽出している。これらの結果は http://www.microrna.org で見ることが可能である。図 5.2.3 はその検索ページであるが、遺伝子名もしくは miRNA を入力することにより、遺伝子名を入力した場合は対応する miRNA 名が、miRNA を入力すると対応する遺伝子名が表示される。またこのアルゴリズムを実装したツールは、ソースが公開されているとともに、windows、Mac、Linux 上で動作するソフトウェアとしてダウンロードできる。
5.2.2 microRNA (miRNA)の予測

miRNA はクローニング等により実験的に発見されているが、発現量の少ないmiRNAは検出が難しい。しかし、miRNA はその構造に特徴があるため、コンピュータによる予測を行うことが可能である。このような予測プログラムとして代表的なものに、Lee P., Limらにより開発されたMiRscanやMiRseekerがある。

Howard Hughes Medical InstituteのEric LaiらはDrosophilaのMicroRNAの予測を行っている。このアルゴリズムは2つのGenome配列のアライメントを基礎とした方法であり、彼らはこのアルゴリズムをMiRseekerと呼んでいる。図5.2.5は、D. melanogasterとD. psuedobscuraの配列をアライメントした結果であり、Y軸の数値が高いほど両配列で保存されていることを示している。同じように配列が保存されていても、miRNAのひと
つである miR-184 の配列と他の領域は miRNA に特徴的な stem – loop 構造を保持しているが、他の領域では決まった構造を持たないことがわかる。また miRNA の precursor は 70 – 100 程度のヌクレオチドから構成されており、進化的に保存されていることからアラインメントを基礎にした予測プログラムを作成している。MIRseeker による予測は図 5.2.4 のように、(1)2 種のゲノム配列から、保存されている領域をアラインメントにより抽出し、(2)miRNA に特徴的な stem – loop 構造の同定とランク付けを行い、(3)miRNA に特徴的なパラメータによる評価というストラテジーを取っている。彼らは 110 種類の miRNA をこのプログラムにより予測し、タンパク質をコードしている遺伝子 1%程度の数の miRNA の存在を予測した。

MiraScan は、White Head Institute の Lee P. Lim が、開発されたアルゴリズムであり、MIRseeker と同じように、2 種類のゲノム配列のアラインメントとその特徴的な構造から miRNA を予測するプログラムである。彼らは miRNA の特徴抽出を、Lau et al. や Lee and Ambros が、すでにに同定されている 50 種類の miRNA をもとに行っている。

MicroRNA は上記のように、配列アラインメントとその特徴的な配列や二次構造を元に
予測することができ、またブリカーサーの長さが100ヌクレオチド程度ということもあり、比較的容易に予測アルゴリズムを組むことが可能と思われる。これらの予測に用いられるアラインメントや二次構造予測は既存のプログラムを応用しているため、これらのアルゴリズムが改善されることにより、より早く正確に予測できることは考えられるが、miRNAの予測に関しては、より大きな進展はないと思われる。
5.3 解析ツール

網羅的に ncRNA を探索する方法としては、マイクロアレイ技術が今後も重要な位置にあると言える。マイクロアレイは、第 5.1.1 章でも見てきたようにアフィメトリック社のフォトリングラフフィー技術により圧倒的な優位性を有していると考えられる。しかしながら、ゲノムワイドに ncRNA を探索、解析するのではなく既知の情報も考慮して解析を行うといった方法論を採用するならば、有望なマイクロアレイ技術が種々提案されている。

また、プロテオーム解析やメタボローム解析の進展に伴い急速の発展を遂げている質量分析計や ncRNA とタンパク質との相互作用解析に有用であろうと考えられる蛍光分子イメージングシステムも有力な解析ツールである。

5.3.1 最新のマイクロアレイ関連技術

東レ株式会社、住友ベーカライト株式会社・株式会社 DNA チップ研究所および日本ガイシ株式会社は 2004 年次々と新規技術の開発に成功している。

東レはナノ加工技術と表面処理技術の組合せにより、微細な凹凸を表面に有するマイクロアレイ用基板の開発を京都大学大学院薬学研究科ゲノム創薬分野・辻本豪三らのグループと開発した。合成樹脂をナノ加工して成型した基板は、極めて低いバックグラウンド蛍光と高いプローブ固相化効率が特徴で従来のガラス基板と比べて 1,000 倍以上の検出感度と S/N を持つと発表した。この基板を用いることによって、安価で高感度な ncRNA 検出用マイクロアレイの開発が期待される。図 5.3.1 参照。

図 5.3.1 東レが開発した新型チップ（日本経済新聞 2004 年 9 月 17 日朝刊より引用）
住友ベークライトと DNA チップ研究所は細胞培養用シャーレで培った、酵素活性を阻害しない新規のマイクロアレイ用基板と DNA 増幅技術の開発に成功した。MPEC 法（Multiple Primer Extension on Chip）と呼ばれる、DNA ポリメラーゼによる基板上での DNA 伸長反応を利用した超高感度検出法の一種である。

MPEC 法は、
- 短い合成オリゴでも十分な感度が得られる
- ダイナミックレンジが広い（atM から pM）
- 短時間のアッセイが可能（蛍光標識反応とハイプリダイゼーション反応を同時に行う）
などの特徴がある。特に短鎖オリゴプローブを可能とするため、ncRNA 検出には適しているものと考えられる。図 5.3.2 に MPEC 法の原理図を示す。

図 5.3.2 MPEC 法の原理図（住友ベークライト社資料引用）

日本ガイシは平成 15 年度独立行政法人新能源産業技術総合開発機構（NEDO）の基盤技術研究促進事業に採択されたプロジェクトで、京都大学大学院工学研究科 岡本晃充らと共同で、蛍光発光性核酸塩基（BDF: Base Discriminating Fluorescent Nucleobase）によるマイクロアレイ開発に成功した。BDF はハイプリダイゼーションによる自ら発光性
グナルを発光する特殊な物質で、これを合成オリゴに組み込んだ形でマイクロアレイを作製する。BDF によるマイクロアレイの特徴は、
- 完全マッチングした場合にのみ蛍光シグナルを発生するため、洗浄工程で非特異的に残存する蛍光物質などからのバックグラウンド蛍光がない
- 試料にはあらかじめ蛍光標識する必要がない（試料による蛍光標識誤差がない）
- 短時間のアッセイが可能（試料の前処理工程を簡略化）
などがあげられる。図 5.3.3 参照。

図 5.3.3 蛍光発光性核酸塩基 BDF の特徴
京都大学岡本晃充 HP より引用
(http://www.sbchem.kyoto-u.ac.jp/saito-lab/123newbase.html)

5.3.2 蛍光分子イメージング技術
ncRNA は、転写ならびに転写後サイレンシング、タンパク質の機能阻害など様々な機能を介して多岐にわたる生体内プロセスに関与していることがわかってきている。つまり、ncRNA の機能を知る上で細胞内などで ncRNA がどのようにタンパク質と複合体を形成しているのか、あるいは細胞内で局在しているのかと異った情報を得ることは重要である。
これらの情報を知る上で分子イメージング技術が活用を浴びている。分子イメージング技術は米国の GE 社（ゼネラル・エレクトリック社）が 2003 年約 1 億 500 億円もの資金を投じて英国アマシャム社を買収するというニュースが話題になっているが、米国の NIH が 2003 年 9 月に発表した今後のロードマップの中でも、分子プローブとイメージング技術の開発が主要テーマとしてあげられている。
国内では、北海道大学大学院理学系研究科超分子分光分野 金城政孝らが蛍光分光相関法（FCS: Fluorescence Correlation Spectroscopy）を用いた細胞内分子計測をイメージング技術と融合される研究を行っている。金城らは、図 5.3.4 に示される計測システムを用いて、核移行タンパク質（Glucocorticoid Receptor: GR）をプローブとして用いることで細胞質・核内の微環境の違いを明らかにする等の研究を行っている。図 5.3.5 参照。この方法論を用いることで、ncRNA がどのようにタンパク質と複合体を形成しているのか、あるいは細胞

90
内で局在しているのかと言った情報を得ることが可能であると思われる。
5.3.3 LC/MS による RNA 修飾解析技術
東京大学大学院工学系研究科化学生命工学専攻 鈴木 勉らのグループは、逆遺伝子学的な方法と高感度質量分析法を組み合わせた「リボヌクレオーム解析」を用いて、網羅的な RNA 修飾遺伝子の同定を行っている。（池内 与志穂、鈴木 勉、リボヌクレオーム解析：RNA 修飾遺伝子の網羅的探索 細胞工学 Vol.22 N0.9 2003, 945-950）
鈴木らの方法は、24 穴プレートで培養した細胞を、96 穴プレートに移し RNA を抽出・分解する。このサンプルを自動サンプラーで LC/MS に導入することで解析を行うというシステムである。大部分が自動化されているため、500 サンプル/月というリボヌクレオーム解析においては極めてハイスループットシステムとなっている。鈴木らのシステムによれば、細胞内に存在する全 RNA の修飾ヌクレオチドが解析できている。1 回の測定により 30 種類以上の RNA 修飾の有無が判定可能とされており、修飾酵素活性を直接評価する方法に比べて基質や反応経路が不明な場合でも遺伝子同定が可能といった特徴を有している。
6. 機能性 RNA 関連特許及びライセンス状況

機能性 RNA（ncRNA）をキーワードとした特許は 2004 年現在国内及び海外においても顕在化していないのが現状であった。機能性 RNA = RNA 干渉という形で医薬企業、ベンチャーならびに各研究機関が研究開発を実施している。今後は医薬・医療応用以外も目的とした ncRNA 機能解析研究が進められて行くと考えられる。本調査研究では、今後の ncRNA 関連特許を戦略的に出願して行くための特許ポートフォリオ作成の参考にするという位置づけを踏まえて、敢えて RNA 干渉特許出願状況とライセンス状況について調査した。

6.1 関連基本特許出願とその審査状況

今回の特許調査は機能性 RNA の中でも最近注目を特に集め、特許出願数もかなり多い RNA 干渉に絞って実施した。RNA 干渉に関する Fire 特許（US6506559）以降、かなり多くの特許が出願されている。単純ではあるが、RNAi テクノロジーの言葉で検索すると数千件の特許が出願されている。しかしながら、実際に成立しているものはまだまだ少ない。更に、同じような特許が同時期に複数出願されているため、どの特許がどのような範囲で成立するか判断することは非常に難しい状況と思われる。また RNA 干渉に関連する研究試薬や医薬品の開発を行っている会社は、わかっているだけでも 50 社以上はある。それらはほとんど M&A を行い、大きな企業ができつつある（例えば、Alnylam 社）。一方、企業間で多数のライセンス関係が存在し、表面に現れていないものを含めると、かなり複雑な状況にあると思われる。

そういう状況のなか、いわゆる基本特許とされるものがいくつか知られており、その一部はすでに成立している。それは、先ほどあげた Fire 特許（US6506559）及び Tuscher 特許（US20020086356、WO02/44321）である。

6.1.1 Fire 特許（US6506559）

優先日は 1997 年 12 月 23 日であり、2003 年 1 月 14 日に成立している。参考までに第 1 請求項のみを以下に示す。

1. A method to inhibit expression of a target gene in a cell in vitro comprising introduction of a ribonucleic acid (RNA) into the cell in an amount sufficient to inhibit expression of the target gene, wherein the RNA is a double-stranded molecule with a first strand consisting essentially of a ribonucleotide sequence which corresponds to a nucleotide sequence of the target gene and a second strand consisting essentially of a ribonucleotide sequence which is complementary to the nucleotide sequence of the target gene, wherein the first and the second ribonucleotide strands are separate complementary strands that hybridize to each other to form said double-stranded molecule, and the double- stranded molecule inhibits expression of the target gene.
請求項には塩基数の制限がないが、[]in vitro[]に制限されている。実施例は線虫に関するものののみである。

6.1.2 Tuschi 特許1（US20020086356）
最先の優先日は2000年3月30日である。参考までに第1請求項を以下に示す。
1. Isolated RNA of from about 21 to about 23 nucleotides that mediates RNA interference of an mRNA to which it corresponds.
塩基数が21から23に限定されている。
【審査状況】
2004年10月に以下のように補正されている。
1. Isolated RNA of from about 21 to about 23 nucleotides that has sequence correspondence to an mRNA and mediates RNA interference by directing cleavage of the mRNA to which it corresponds.
しかしながら、この補正は認められず、2005年1月にFinal Rejectionが特許庁よりなされている。

6.1.3 Tuschi 特許2（WO02/44321）
最先の優先日は2000年12月1日である。参考までに第1請求項を以下に示す。
1. Isolated double-stranded RNA molecule, wherein each RNA strand has a length from 19-25 nucleotides, wherein said RNA molecule is capable of target-specific nucleic acid modifications.
2. The RNA molecule of claim 1 wherein at least one strand has a 3’ overhang from 1-5 nucleotides.
3’ overhangがRNA干渉に必要である旨の記載がある。

6.1.4 Fire特許とTuschi特許1との比較
以下の記載は米国弁護士の意見を踏まえたものである。
6.1.4.1塩基数
Fire特許は、成立した請求項でも塩基数に限定が付されていない。一方、Tuschi特許1では、まだ審査中であるが塩基数は21-23塩基に限定されている。従って、文言上はFire特許はあらゆる長さのものを包含する。しかしながら、Fire特許の明細書には[]塩基数は少なくとも25以上である[]旨の記載があることから、実際に裁判で争った場合、裁判所ではFire特許は25塩基未満のものには及ばない旨判断される恐れがある。

6.1.4.2細胞・動物・ヒト
Fire特許は、成立した請求項では[]in vitro[]の限定が付されているため、[]in vivo[]の
実施にはこの特許の効力は及ばないとと思われる。しかしながら「in vitro」の限定が付されているものの、細胞や動物の種類の限定がなく、下位の従属請求項では「動物細胞」に関して成立している。従って、マウスやラットの細胞を用いた場合は問題となり得る。ところが、Fire 特許では実施例は線虫のみであるため、実際に裁判で争った場合、裁判所では Fire 特許は線虫以外のものには及ばない旨判断される恐れがある。一方、Tuschl 特許は出願時の請求項には、細胞や動物の種の限定は付されていない。しかし動物細胞を用いた実施例しか存在しないため、この請求項が成立したとしても「in vitro」に限定される可能性が高く、「in vivo」を包含して成立する可能性は低いと考えられる。

6.1.5 基本特許の状況
以上のことから、これら 2 つは非常に重要な基本特許であることには疑いの余地はないが、必ずしも強い効力を有するとは限らないと考えられる。従って、対象疾患及び siRNA 配列を明確化・特定した具体的な in vivo DATA を取得すれば、今からでも十分強い特許を取得することができ、事業を行っていくには十分可能であると考える。

6.1.6 その他の基本特許
上記の Fire 特許及び Tuschl 特許以外にも多くの基礎的な特許（ここで、「基礎」とは請求項に特定の遺伝子や特定の疾患などの限定がないものとした）が出願されている。以下にその特許出願の一例を基本メカニズム・合成技術・投与方法・その他に分けて図示する。この分類は、第 3.5.3 章での分類に基づく。

6.1.6.1 基本メカニズムに関するもの

<table>
<thead>
<tr>
<th>出願/特許番号</th>
<th>持権者・出願人</th>
<th>优先日</th>
</tr>
</thead>
<tbody>
<tr>
<td>US2000655968A1</td>
<td>Carnegie Institute of Washington (Fire)</td>
<td>19990722</td>
</tr>
<tr>
<td>US20020114784A1</td>
<td>Medical College of Georgia Research Institute</td>
<td>19990129</td>
</tr>
<tr>
<td>EP1141823A1</td>
<td>Ribobase AG</td>
<td>19990130</td>
</tr>
<tr>
<td>WO200168836</td>
<td>Genetics</td>
<td>20000318</td>
</tr>
<tr>
<td>US20020086356A1</td>
<td>Whitehead Institute for Biomedical Research (Tuschl)</td>
<td>20000390</td>
</tr>
<tr>
<td>WO200411328A2</td>
<td>Max Planck Gesellschaft (Tuschl)</td>
<td>20000201</td>
</tr>
<tr>
<td>US20020027705A1</td>
<td>Cancer Research Campaign Technology</td>
<td>19991119</td>
</tr>
<tr>
<td>US20000105351A1</td>
<td>The Leland Stanford Junior University</td>
<td>20000123</td>
</tr>
<tr>
<td>WO20020103542A1</td>
<td>Carnegie Institute of Washington etc.</td>
<td>20000130</td>
</tr>
<tr>
<td>WO2004007719A2</td>
<td>Max Planck Gesellschaft</td>
<td>20020101</td>
</tr>
<tr>
<td>US20020173476A1</td>
<td>The Trustees Of The University Of Pennsylvania</td>
<td>20000114</td>
</tr>
</tbody>
</table>
6.1.6.2 合成技術に関するもの

<table>
<thead>
<tr>
<th>出願/特許番号</th>
<th>出願人</th>
<th>優先日</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>US20030157691</td>
<td>California Institute of Technology</td>
<td>20010913</td>
<td>レトロウイルスの生産方法</td>
</tr>
<tr>
<td>US20040023390</td>
<td>University of IOWA</td>
<td>20020805</td>
<td>p17 promoterを用いるウイルスベクター</td>
</tr>
<tr>
<td>US20040110008</td>
<td>Mirus</td>
<td>20020701</td>
<td>高親和性化合物とポリカチオンを含むする製剤</td>
</tr>
<tr>
<td>WO20040065201</td>
<td>Ainvam</td>
<td>20030121</td>
<td>lipophilic groupを有するdsRNA</td>
</tr>
<tr>
<td>WO2003003449</td>
<td>Nuclonics</td>
<td>20020506</td>
<td>スペルミンと酸酐を有する組成物</td>
</tr>
<tr>
<td>WO2004009213</td>
<td>MIT</td>
<td>20020928</td>
<td>カチオンポリマー、脂肪などを含有する組成物</td>
</tr>
</tbody>
</table>

6.1.6.3 投与方法に関するもの

<table>
<thead>
<tr>
<th>出願/特許番号</th>
<th>出願人</th>
<th>優先日</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>US20030157691</td>
<td>California Institute of Technology</td>
<td>20010913</td>
<td>レトロウイルスの生産方法</td>
</tr>
<tr>
<td>US20040023390</td>
<td>University of IOWA</td>
<td>20020805</td>
<td>p17 promoterを用いるウイルスベクター</td>
</tr>
<tr>
<td>US20040110008</td>
<td>Mirus</td>
<td>20020701</td>
<td>高親和性化合物とポリカチオンを含むする製剤</td>
</tr>
<tr>
<td>WO20040065201</td>
<td>Ainvam</td>
<td>20030121</td>
<td>lipophilic groupを有するdsRNA</td>
</tr>
<tr>
<td>WO2003003449</td>
<td>Nuclonics</td>
<td>20020506</td>
<td>スペルミンと酸酐を有する組成物</td>
</tr>
<tr>
<td>WO2004009213</td>
<td>MIT</td>
<td>20020928</td>
<td>カチオンポリマー、脂肪などを含有する組成物</td>
</tr>
</tbody>
</table>
6.1.6.4 その他

<table>
<thead>
<tr>
<th>出願/特許番号</th>
<th>権利者・出願人</th>
<th>優先日</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>US2004029275</td>
<td>Ambion</td>
<td>20020810</td>
<td>siRNAをカクテルを用いた抑制方法</td>
</tr>
<tr>
<td>US20030226891</td>
<td>Mirus</td>
<td>20020517</td>
<td>RNA切断型薬剤の組み合わせ用いた抑制方法</td>
</tr>
<tr>
<td>WO2004012011</td>
<td>MIT</td>
<td>20021001</td>
<td>配列選択方法</td>
</tr>
<tr>
<td>WO2004045543</td>
<td>Dharmacon</td>
<td>20021114</td>
<td>配列選択方法</td>
</tr>
<tr>
<td>WO2003100098</td>
<td>ISIS Innovation</td>
<td>20020528</td>
<td>配列選択方法</td>
</tr>
<tr>
<td>US2004071116</td>
<td>City of Hope</td>
<td>20030213</td>
<td>メチル化する方法</td>
</tr>
<tr>
<td>WO0478663</td>
<td>産業技術総合研究所</td>
<td>20030227</td>
<td>DNAメチル化技術</td>
</tr>
<tr>
<td>US2003014409</td>
<td>University of Massachusetts</td>
<td>20031116</td>
<td>RNA活性の増強方法</td>
</tr>
<tr>
<td>WO2004098332</td>
<td>Genzyme</td>
<td>20030505</td>
<td>siRNAを用いた免疫応答抑制方法</td>
</tr>
</tbody>
</table>

6.2 周辺特許の出願状況からわかる課題

RNAiに関して基本・周辺技術について出願状況を総括すると図6.2.1に表されるように、ほぼ特許的には網羅されていると行って良い。しかし、第6.1.5章で述べたように、必ずしも強い効力を有するとは限らないとも考えられる。

特に研究、産業において現状ではRNA合成技術には課題が多い。機能性RNA研究のボトルネックになっていると言っても過言ではない。この分野では、理工学振興会や多比良らの出願があるが、国内の化学・合成メーカーの出願は少ない。

これまでのバイオテクノロジー研究開発では、精密化学を得意とする化学メーカーの参入が我が国では多くは無かった。今後は、機能性RNA関連分野で国際的な主導権を握る上からも精密化学メーカーの本分野への参入を促すべきであろう。
6.3 主な研究者が出願している特許状況

6.3.1 Fire 特許に記載されている複数の発明者

第 6.1.1 章であげた特許の発明者全員のその後の出願を以下に図示する。
6.3.2 Tuschi 特許に記載されている複数の発明者
第 6.1.2 章であげた特許の発明者全員のその後の出願を以下に図示する。

<table>
<thead>
<tr>
<th>出願特許番号</th>
<th>優先日</th>
<th>タイトル</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-010101</td>
<td>2008-01</td>
<td>AB×CD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
<td>特許をマレオドチド</td>
</tr>
<tr>
<td>08-020202</td>
<td>2008-02</td>
<td>AB×CD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
<td>アラブサクレオチド</td>
</tr>
<tr>
<td>08-030303</td>
<td>2008-03</td>
<td>AB×CD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
<td>一物をBCD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
</tr>
<tr>
<td>08-040404</td>
<td>2008-04</td>
<td>AB×CD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
<td>一物をBCD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
</tr>
<tr>
<td>08-050505</td>
<td>2008-05</td>
<td>AB×CD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
<td>配列選択方法</td>
</tr>
<tr>
<td>08-060606</td>
<td>2008-06</td>
<td>AB×CD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
<td>ターゲットアレルを特異的に阻害する方法</td>
</tr>
<tr>
<td>08-070707</td>
<td>2008-07</td>
<td>AB×CD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
<td>発現ペクター</td>
</tr>
<tr>
<td>08-080808</td>
<td>2008-08</td>
<td>AB×CD×EF×GH×IJ×KL×MN×OP×QR×ST×UV×WX×YZ</td>
<td>特許をマレオドチド</td>
</tr>
</tbody>
</table>

6.4 事業化に向けた提言

事業化に向けて重要な点を、siRNA 創薬を例にとって説明する。まず一番重要なのは具体的な対象疾患を設定することである。どのような疾患を対象とするかによって、投与方法や合成方法が異なってくるからである。対象疾患の設定後、この遺伝子をターゲットとするか、どういう配列を用いるかを決定する必要がある。また、その対象疾患やターゲット遺伝子に最適な合成方法・投与方法を選択する必要がある。これらの要素に関してすでに第三者が特許/技術を有している場合は、実施許諾を受ける、特許/技術を買う、企業を買収するといった方法で手に入れる必要がある。更には、対象とする疾患に関連性が高い疾患に関する特許/技術を積極的に開発/取り込んでいくことによって、事業の価値を高めていく必要がある。

このように具体的な目標を設定し、具体的な目標達成に必要な特許の実施許諾、特許の売買を中心とした特許ポートフォリオの構築を通じて事業化を目指すことが重要である。
7. 先行事例調査

7.1 機能性 RNA 探索の事例

7.1.1 siRNA 合成

B-Bridge, Incの事例
B-Bridge International Inc. (A California Corporation)
設立：2000年2月
代表取締役：木本博之
資本金：$395,000
事業化に向けて重要な点を、siRNA創業例にとって説明する。まず一番重要なのか具体的な対象疾患を設定することである。どのような疾患を対象とするかによって、投与方法や合成方法が異なってくるからである。対象疾患の設定後、どの遺伝子をターゲットとするか、どういう配列を用いるかを決定する必要がある。また、その対象疾患やターゲット遺伝子に最適な合成方法・投与方法を選択する必要がある。これらの要素に関してすでに第三者が特許/技術を有している場合は、実施許諾を受ける、特許/技術を買収、企業を買収するといった方法で手に入れる必要がある。更には、対象とする疾患に関連性が高い疾患に関する特許/技術を積極的に開発・取り込んでいくことによって、事業の価値を高めていく必要がある。このように具体的な目標を設定し、具体的な目標達成に必要な特許の実施許諾、特許の売買を中心とした特許ポートフォリオの構築を通じて事業化を目指すことが重要である。
本社所在地：639 North Pastoria Avenue, Sunnyvale CA 94085 USA
会社概要：バイオ研究開発業、製品の製品販売及び、コンサルティング

＜沿革＞
2000年2月 B-Bridge International, Inc. 設立
2001年2月 4320 Stevens Creek Blvd San Jose CA に移転
2001年10月 Dharmacon 社独占販売権獲得
2002年6月 大塚製薬 Adiponectin ELISA Kit 全世界（日本を除く）独占販売権獲得
2002年7月 B-Bridge RNAi クラブ発足
2003年1月 DRCA 電気泳動装置およびゲル販売権獲得
2003年2月 Stanford大学の遺伝子治療技術を利用した会社 Avocel を Stanford大学教授 Mark Kay と共に設立
2003年8月 639 N. Pastoria Ave, Sunnyvale CA に移転
2003年10月 株式会社ストレックスを名古屋大学 成瀬助教授らと大阪に設立
2004年5月 Avocel が、オーストラリアの RNAi 関連上場企業 Benitec Ltd.と M&A
2004年9月 バイオサイテキャピタルとバイオインキュベーション事業で提携
2004年11月 自社ブランド RNAi 商品ライン siSolutions を発売
2004年12月 北海道ベンチャーキャピタルとバイオインキュベーション事業で提携
2004年12月 北海道ベンチャーキャピタルとバイオインキュベーション事業で提携
siRNA合成が売上げの50%近くを占める。RNA合成における問題点は、アミダイト薬物合成高価である、合成時のカップリング効率が低い、精製収率が低いこと等である。そのため、1本あたりのsiRNAは5万円前後と高価であり、しかも現状では1遺伝子あたり数種類のsiRNAを合成することが多い。
アミダイト薬物：TOMアミダイトやACEアミダイト等があるので。現在汎用されるTOMアミダイトは数年内に特許フリーになり、合成価格が下落するが、DNAのように安価にはならないと予想（2.3万円くらい）。
精製収率：生物機能に影響を与えない純度を検討することにより、精製にともなう収率低下を最小限にしている。

顧客需要、研究動向をもとに1,000遺伝子を選別し、各遺伝子に対応するsiRNAを設計・合成し、ノックダウンを検証した。今後更に数を増やし、validateされたsiRNAとして販売することを考えている。
siRNA、アンチセンスDNAの共通の課題であるヌクレアーゼによる切断に関しては、新規な核酸修飾技術を確立した。動物投与実験により、従来よりも1/20の低用量、2.5mg/kg（50mg/kg：AlnylamPharmaceuticals, Inc.のデータ）でノックダウンによる移植癌の退縮が確認できた。
siRNAに関して、AlnylamPharmaceuticals, Inc.と他1社がMITから独占使用権が与えられているが、27merのblunt end dsRNAは特許範囲外であることを活用し、レントチルスを利用したライブラリを作成、今後販売する。
アフィメトリクスGeneChipに搭載されているオリゴ情報をもとに5万遺伝子のオリゴを合成（5種類/遺伝子、計25万種類のオリゴ）、ベクターに挿入し、組換えウィルスペクターを作製。
該ベクターを細胞に導入し、目的の表現型をもつ細胞を選別、ウィルスペクターを抽出、アフィメトリクスGeneChipで配列を解析。得られた配列情報をもとにdsRNAを合成し検証。共同研究グループとして、米国内、日本国内あわせて十数組ある。共同開発、情報提供、材料などを分担。

7.1.2 ncRNA機能探索

非コードRNAの同定と機能解析をDryとWetの両面から研究している。研究対象は、主にsnoRNA（small nucleolar RNA:核小体低分子RNA）でC/D boxとH/ACA boxを持つ
RNAの予測を in silicoで行い、予測したものを実験的に検証している。配列予測はC/D boxとH/ACA boxは配列が保存されているので、この領域のアライメントを行い、C boxとD boxに囲まれた領域、またはH boxとACA boxに囲まれた領域はRNAの二次構造予測を行い、構造のアライメントにより、snoRNAを予測している。Computationalには1,000個程度の候補配列が現れる。この候補配列を予測するときにスコアがつけられ、上位数100程度に絞って、まず、DNAアレイにより検証する。アレイによりスクーリングされたsnoRNAについて更にNorthen Blottingにより、発現をコンファームする手法を取っている。スクリーニング用のアレイはPCRにより増幅したDNAを自作でスポットティングしているとのことであった。

予測における3D構造については、3D構造も重要でクリスタロラフィと協調して進めていくとのことであった。Non coding RNA(機能性RNA)のデータベースの標準化については、現状はncRNAにも色々な種類があるので、即座に標準化することは難しいが、将来的には必要であるという認識であった。

予測プログラムについては、ゲノム比較と熱力学的な予測プログラムが組合わさったものが良いとのことであった。

またカリフォルニア大学サンタクルーズ校ではRNAセンターを設立し、RNA研究を精力的に行っている。その内容は、Ribosome Structure and Function研究（HARRY NOLLER, Director, Center for Molecular Biology of RNA）,RNA Splicing研究（Manuel Ares, Jr., Professor, Dept. of Molecular, Cell and Developmental Biology）,Regulation of Alternative Splicing研究（Alan M. Zahler－Associate Professor, Dept. of Molecular, Cell and Developmental Biology）,Non-coding RNA gene finders and experimental genomics（Todd Lowe－Assistant Professor, Dept. of Computer Engineering）,Genomics and Bioinformatics（David Haussler－Professor, Dept. of Computer Science）であり、ウェットからドライまで幅広く研究している。

7.2 パイオインフォマティクス支援ツールの事例

7.2.1 特異的siRNA配列設計-1

東京大学大学院理学研究科生物化学専攻　程久美子の事例

RNAi効果の高い2本鎖RNA(short interfering RNA)の配列規則性の検討と検証を行い、siRNAの規則性を見出した。結果として、特異的siRNA配列設計システム「siDirect™」の開発に成功し(株)RNAi社から販売するに至っている。

【siRNAの配列とタンパクとの関係について】

効果的なsiRNA配列の条件は、(i)5'末端がG/Cである(ii)3'末端がA/Uである(iii)3'末
端から7塩基がA/U richである (iv)全体的にGCの連続が無いことである（図7.2.1）。そのなかで、特に効果の高いsiRNAをClass Iaと定義づけている。

図7.2.1 効果的なsiRNA配列

配列とタンパクの関係があるとしたら、siRNAの両末端にタンパクが結合することが考えられる。特に5'側へのタンパク結合の可能性が高い。3'側はRNAヘリカーゼの作用を受ける可能性が示唆されている。3'側の配列が水素結合の少ないA/Uのときは、RNAヘリカーゼがより効果的に働くと考えられる。2本鎖のsiRNAが3末端から分解されることによって、mRNAからしてアンチセンセス側の1本鎖RNAが生成し、RNAiを引き起こすと考えられる。

【RNAiの効果について】

siRNAは2本鎖で構造がDNAに近いので、体内内でもある程度配列の構造は持続するものと思われる。Class Iaの配列間でも、RNAiの効き始めや持続時間に差がある。効果の高い配列は、RNAiの効果が表れるのが早く、持続時間も長い。効果の高い配列では1日でRNAi効果が表れ、10日以上持続する。RNAiの効果は、細胞の分裂頻度による影響を受ける可能性がある。分裂頻度の低いニューロンの細胞では、長期的にRNAiが効きやすいという報告もある。程久美子研究室では、siRNAのターゲットは全てmRNAのコード領域にしている。非コード領域ではRNAiの効果が低くなるそうである。

【siRNAの設計とoff-targetについて】

程久美子研究室では、ターゲット以外の配列とのミスマッチが3以上のものをoff-targetのsiRNA配列として扱っている。現在、上記off-targetの条件および図7.2.1の条件を満たす配列は、Refseqで99%以上設計が可能である。ただし、ターゲット配列のGC比率が高いケースでは設計がしにくい（Class Ia まで条件を絞るとと少なくなる）ミスマッチの数が同じでも、位置によってoff-target効果が異なる可能性がある。ミスマッチが末端のものよりも、真ん中のほうがoff-target効果がおそらく高いく。今後、ミスマッチ場所の偏りをチェックする仕組みを考える必要がある。ターゲットに対して末端塩基がミスマッチとなっても、図7.2.1の法則に当てはめるほうがRNAiの効果が高い。

【off-targetチェックのための背景配列】
off-targetチェックの背景配列は、non-redundantな各遺伝子のエキソン領域をつなぎ合わせたものを使用している。遺伝子の配列情報は、RefseqとUnigeneを組み合わせたものをベースとし、それをゲノム上にマッピングしてエキソンを決定している。マッピングツールとして東京大学大学院新領域創成科学研究科の森山真一が開発したAlpsを使用。Refseqは2ヶ月に一度メジャーな更新がある。それにあわせて背景配列も更新する。過去の背景配列で設計したsiRNAのoff-targetチェックも行う。

【その他】
シオウジョウバエと哺乳類では、siRNAが働く機構が全く違うようである。哺乳類では効果があるが、ハエでは効果がない配列も存在する（その逆はたくさんある）。siRNA設計アルゴリズム（siDirect）については特許を取得し、RNAi社に譲渡した。背景配列作成アルゴリズムの特許は、東京大学大学院新領域創成科学研究科 森下が取得。

7.2.2 特異的siRNA配列設計-2

東京大学大学院工学系研究科化学生命工学専攻 鈴木 勉の事例
試験管内で染核結合を用いた新しいsiRNAの製造法（特許出願済）を開発し、製造コストを1/10以下に削減することに成功している。また、siRNAの配列と発現抑制効果の間に明確な法則性を発見し、siRNA設計アルゴリズムの開発を行っている。

緑色蛍光タンパク質(EGFP)のmRNA(720塩基)をターゲットに可能な全てのsiRNAを702本作成し、ノックダウンの効率を定量的に比較することによって、配列とノックダウン効率の間に明確な法則性を見出した。この研究は全ORF領域をターゲットとした全てのデザインのsiRNA活性を測定した唯一の例である。siRNA全体の塩基組成とポジションごとの塩基組から得られたパラメータを用いてRNAiの活性を明確に予測することに成功している（特許出願済）。特にsiRNAのポジションとRNAi活性ととの相関に3塩基の周期性を見出しており、RNAiのメカニズムの解明に糸口を与えるものである。この知見から作成されたRNAi活性予測アルゴリズムはあらゆる遺伝子に対するsiRNAの活性を的確に予測することを可能とし、前述したsiRNAの転写合成法と組み合わせ、株式会社iGENE社より配列設計のサービスを行っている。
また、NEDOのタンパク質機能解析・活用プロジェクトに参画しoff-targetを排除した特異性の高いsiRNAの開発とエフェクター配列を配置した次世代siRNAの開発を行っている。
7.3 解析ツールの事例

7.3.1 タイリングアレイ

Affymetrix 社の事例

現在これらのアレイは、遺伝子間の相互作用を解析する目的でアカデミック、政府研究機関そして、他の非営利の研究所等々において Healthcare 分野を含めて、複雑な遺伝情報の解析するための世界標準ツールであると考えている。また、製薬、バイオテクノロジー、農薬製品および疾患解析などの分野でも数多く使用されている。

米国 NIH / NHGRI (National Human Genome Research Institute) が計画している ENCODE (Encyclopedia of Human DNA Elements) プロジェクトのパイロットプロジェクトにおいて、全体の 1%に当たる 30Mbp (44 領域) の解析をアフィメトリックスを中心に数社で実施している。今後も主導権をとり、ENCODE プロジェクトを推進すると予想される。

解析像度 5bp および 35bp の tiling array によるヒトゲノム解析（10 種類の染色体）を開始した。今後ヒト全ゲノムを網羅する tiling array (91 枚) を作製し、alternative splicing, non-coding RNA 等のゲノム解析に展開する。

バイオインフォマティクスに関しては、tiling array 等でデータ解析量が膨大となるため、新たなソフトを開発した。web から無料でダウンロードできる（開発に国家予算を使用しているため、無料公開が原則であり、かつチューニングも可能）、基本的には Wilcoxon signed rank test による統計解析手法を採用し、膨大なデータを短時間で処理できることが特徴。

2003 Annual report によると、2003 年売上は $300 billion (2002 年 +10 billion)。したがって DNA チップ市場全体は未だ拡大傾向にあり、今後 tiling array や exon array 等により市場は再拡大すると想定している。

【機能性 RNA について】

Affymetrix 社の製品は既に日本の中でも広く使用されており、遺伝子発現解析ツールの市場で圧倒的な地位を占めている。現在のマイクロアレイ技術の中で、遺伝子の発現量を
計測するということに関して、真摯に対応してきた会社として大きく評価することができる。

そのなかでも、機能性 RNA、あるいは非翻訳 RNA (ncRNA) の発現解析にも使用可能なツールの開発は順調に進行している。上記 ENCODE 計画はシナノプロジェクトの一環であるが、社内では非翻訳領域からの転写産物に関しても解析可能な実験系を確立しており、独自に ENCODE 計画よりも詳細なマイクロアレイを構築し、培養細胞系において細胞質・核内の RNA について poly(A)あり・なしに再分画し、その発現解析を行っている。そのデータに対してデータベースより情報を付与して、機能性 RNA を含めた新規遺伝子の探索と機能解析を試みている。現在は 10 染色体のみであるが、今後の技術レベルの向上に伴い、2-3 年後には全染色体を一度に解析できるツールの開発をロードマップとして掲げている。

もう一つはスプライシング変異を含めた遺伝子の発現解析をするためのエキソソアレイである。基本的に翻訳される RNA の解析であるが、RNA の構造のバリエーションが、その後できてくるタンパク質の機能を制御すると言う意味において、RNA が大きな役割を果たしていると考えられる。このエキソソアレイに関しては現状の製作技術のみで、考えられる全てのエキソソ（既知、予測含む）を網羅できると言う点で、今すぐにでも普及してくる可能性がある。

7.4 事例調査からみた機能性 RNA 研究・開発の現状

ここでは、RNAiを事例にとり実用化がどのように行われているかを検証する。ここで述べられている実用化スキームは ncRNA 機能研究プロジェクトにおいて、産業応用を考える上で有用な示唆を与えるものと考える。

7.4.1 実用化 C 型肝炎をモデルとした RNA 創薬へのヒント

7.4.1.1 概要

【疾患の概要】

C 型肝炎ウイルス(HCV)は 1970 年代に A 型肝炎ウイルス、B 型肝炎ウイルスが同定されたのち、非 A 型、B 型肝炎ウイルスとしてその実態を明らかにしようと多くの研究者により研究がすすめられた。1989 年になってようやく HCV の実体が確定し、その後ようやく治療法の研究がされるようになった。HCV はプラス 1 本鎖 RNA をゲノムとする RNA ウイルスであり、フライウィルス科へバシウイルス属に分類される。現在までに有効なワクチンは開発されておらず、このウイルスの駆除は一般にインターフェロン(IFN)投与(単独投与、リパビリンとの併用、PEG-IFN の投与など)により行われる。しかしながら、HCV にはいろいろな遺伝子型があり、その遺伝子型によって IFN 治療の効果が限定される。日本で特に多く見られる 1b 型のウイルスに対しては IFN による治療効果が非常に低い為、更有効な治療手段が求められている。
C型肝炎はウイルス肝炎の一種であり、HCVの感染によっておこる。HCVは血液を介して感染する。感染後は以下の経過をたどる。

・ HCVに感染すると、70%前後の人がHCV持続感染者（HCVキャリア）となる。
・ HCVキャリアの65%から70%は慢性肝炎になる。
・ HCVキャリアに適切な治療をしなかった場合、20~25%が肝臓がんに進展すると予測されている。

【患者数】
日本におけるHCVキャリアは16歳から69歳までで推定86.2万人、70歳以上の年齢層におけるHCVキャリアを加えると150万人にのぼると推定される（厚生労働省HPより）。
年齢が上がるにつれ、HCV抗体陽性率が上昇する。

<table>
<thead>
<tr>
<th>年齢</th>
<th>抗体陽性率</th>
<th>年齢別人口</th>
<th>持続感染者</th>
</tr>
</thead>
<tbody>
<tr>
<td>0〜5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6〜10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11〜14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15〜19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20〜25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26〜50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51〜69</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: 1995年から2000年までに初めて献血した348.6万人について、2000年の時点における年齢に換算した年齢別HCV抗体陽性率
*2: 2000年国勢調査による、16〜19歳については15〜19歳の人数を用いた
*3: HCV抗体陽性である人の約70%がC型肝炎ウイルス持続感染者として計算した値

表7.4.1 HCV感染者数

【HCVの構造】
HCVは、約9.6kbからなる1本鎖RNAウイルスである。約9kbの大きなORFがあり、その両端に5'非翻訳領域と3'非翻訳領域が存在する。ORFの5'側は構造タンパク、3'側は非構造タンパクをコードしている。

図7.4.1 HCVの構造
この図からわかるように、ウイルス RNA は非翻訳領域とタンパクをコードする領域から成り立っており、更にタンパクをコードする領域は種々の機能を持ったタンパクをコードする領域から成り立っている。従って、ウイルス RNA はすべての部分が一緒に同じ機能を有するわけではないため、どの領域をターゲットにした医薬（特に siRNA 医薬）を作るの
か非常に重要である。

【ウイルスの遺伝子型】
一般に RNA ウイルスのゲノムにコードされている RNA 依存性 RNA ポリメラーゼは、DNA ポリメラーゼが持つような修復機能を有しておらず、ポリメラーゼによるウイルスゲノムの複製の際に生じる読み間違いがそのまま子孫に受け継がれる。その結果、HCV は
RNA ウイルスの中でも 1、2 を争う顕著な遺伝的多様性を有している。
HCV の遺伝子解析が盛んになるにつれ、ウイルス株間で相異性が低いものが単離され始め、これが遺伝子型と言われる分類となった。現在までに 11 種類の大きなグループの中に
30 以上の遺伝子型が同定されている。
それぞれの遺伝子型間では塩基配列レベルで 20%以上、アミノ酸配列レベルで 15%以上の違いが認められる。我が国に於いては 1b 型が主な遺伝子型（約 70%）であり、その他に
2a 型（約 20%）、2b 型（約 10%）が存在しており、欧州に多い 1a 型はほとんど存在していない。世界的に分布しているのは 1a、1b、2a、2b、3a、3b 型で、それ以外はかなり限定された地域に存在している。
更に、同じ遺伝子型に属するウイルス株の間で比較しても塩基配列で 5〜8%、アミノ酸配列でも 4〜5%の違いがあり、個々のウイルス株の間でも遺伝子多様性が認められ、これ
が HCV 治療の難しさの原因の一つとなっている。このため、遺伝子型にあわせた治療、つ
まりテーラーメード医療が必要となってくる。以下に、日本人及び米国人のウイルス型、IFN
単独の治療効果を図示する。

日本人の HCV ウイルス型

図 7.4.2 日本人の HCV ウイルス型

108
図 7.4.3 米国人の HCV ウィルス型

7.4.1.2 HCV を標的とした機能性 RNA 医薬の開発状況
【企業の一覧】
HCV に対する機能性 RNA 医薬を研究・開発中の企業の一部を以下に示す。

<table>
<thead>
<tr>
<th></th>
<th>RNAi</th>
<th>Ribozyme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Nucleonics</td>
<td>- SiRNA(Ribozyme)</td>
</tr>
<tr>
<td></td>
<td>- Benitec</td>
<td>- Immusol</td>
</tr>
<tr>
<td></td>
<td>- Alnylam(Ribopharma)</td>
<td>- Washington Univ.</td>
</tr>
<tr>
<td></td>
<td>- SiRNA(Ribozyme)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Antisense</td>
<td>- Aptamer</td>
</tr>
<tr>
<td></td>
<td>- ISIS</td>
<td>- 産業技術総合研究所</td>
</tr>
</tbody>
</table>

以上の中から、いくつかのベンチャー企業について紹介する。

- **Benitec社**
 Benitec 社は、ddRNAi(DNA directed RNAi)を基盤とする会社である。Benitec 社は、Stanford Junior University より siRNA に関して独占的な実施権を得ていた Avocel 社を買収して HCV の開発を行っているようである。ターゲット領域は5'非翻訳領域である。

- **Nucleonics 社**
 Nucleonics 社は、eRNA(expressed inhibitory dsRNA)技術を有する。HCV の開発に当たり、ターゲット領域（3' 非翻訳領域）に関しては Dr. Charles Rice より非独占的なライセンスを得ており、RNA の発現に関しては California 大学から独占的な実施権を得ており、DNA construct に関しては Wyeth Pharmaceuticals より co-exclusive な実施権を得ている。Nucleonics 社は独自のデリバリー技術を有しており、それを用いて開発を行っているようである。しかしながら、今の段階からすでに次世代型のデリバリーを考
え、その技術に関して他社から独占的な実施権の設定を受け、デリバリーロー改良したものの研究・開発を進めている。

上記 Benitec 社と Nucleonics 社との間では RNAi では初めての特許請求が進行している。Benitec 社は自社の特許権（US6573099）を侵害しているとして Nucleonics 社を訴え、一方 Nucleonics 社は Benitec 社の特許は無効であると主張し、両者は争っている。

その他の企業
特許検査の結果からは、siRNA に関しては、Chiron corporation (WO0411647・ターゲットは 5' 非翻訳領域、Eli lilly 社 (WO0316572・ターゲットは 非翻訳領域、SiRNA 社) (Ribozyme 社) (WO0370750・ターゲットは 5' 非翻訳領域、) Alnylam 社 (Ribopharma 社) (WO0465601 など・ターゲットは NS3、3' 非翻訳領域) から特許が出願されている。RNA アブタマーに関しては、産業技術総合研究所（特許 3612551 号・ターゲットは NS3）の特許が成立している。このように、各社それぞれ異った領域をターゲットにして HCV 治療薬の研究・開発を行っている。

7.4.1.3 応用例及び問題点
siRNA 医薬を開発する上でデリバリーや RNA の合成等は当然問題となるが、HCV 治療薬を開発する上で特に問題となる点は、すでに述べたように HCV にはいろいろな遺伝子型があり、その型によって既存の治療薬の効果がまったく異なる点である。また、今開発中の siRNA 医薬はターゲット領域の遺伝子配列と相補的であることが重要であるため、ターゲット領域の遺伝子配列に変異があるか否かは非常に重要である。また変異が多いということから、一種類の siRNA だけでなく、数種類の siRNA を組合せて使用することが重要であると考えられる。従って、HCV の遺伝子型及びその配列を判定・検出し、siRNA の最良の組合せを見出すことは非常に重要である。そこで、以下の応用例が考えられる。この DNA チップを用いた応用例は、DNA チップを用いていることから迅速に患者毎に遺伝子型・その変異を検出し、その患者に最適な siRNA の組合せを見出し、患者毎に最適な治療が選択できるという点で非常に有用であり、患者の QOL (クオリティ・オブ・ライフ) を十分満足させることができると考えられる。
次に、合成面からの問題点であるが、それはRNA合成に非常にコストがかかかるというところである。現在機能性RNAの研究が盛んに進められていることから、RNAの研究試薬、診断薬、医薬品としてのニーズが非常に高まっており、今後RNAの需要が急速に伸びる可能性がある。そこで以下の点が問題となる可能性がある。つまり、RNAの原料自体の入手に問題がないとした場合、もしRNA合成に関して重要な技術を第三者に押さえられてしまうと、機能性RNAの研究全体が影響を受ける可能性があるということである。逆に言えば、RNA合成に関して非常に優位性のある技術を開発できたならば、機能性RNAの研究全体を牛耳ることができる可能性があるということである。そういった意味で、RNA合成は機能性RNA研究の１番のボトルネックであるとも考えられる。

7.4.1.4 まとめ
事業化する上で重要なポイントは、siRNA医薬品を開発する場合を例にとって考えると、まず対象疾患の明確化である。そして、対象疾患の特性を抽出し、それに最適なターゲット・配列デザインを選択し、最適なデリバリーユニット・合成方法（発見方法を含む）を選択することである。これはsiRNA医薬品の開発の場合だけでなく、すべての事業化へ向けたアプローチにおいて共通した、非常に重要な考え方であると考える。
7.5 ドイツ・官民コンソーシアムによるバイオインダストリー振興策
(RNAnetwork)

7.5.1 RNAnetworkの概要

ドイツでは19の州ごとにバイオインダストリーの振興を図るバイオリージョン計画が立てられ、政府により高い評価を得た州への研究資金援助(2,500万ユーロ)がなされている。Bayer 社のような大きな民間企業をかかえる州では民間企業からの資金も入り、高い評価を得ているが、ベルリン地区では大きな民間企業もなく、高い評価をえることができないでいる。

ベルリン自由大学(Freie Universität Berlin)のErdmannは1990年代半ば以降、自らもバイオベンチャーを立ち上げ、ベルリンとしてのバイオリージョン計画の立案に関与している研究者である。RNA 技術の研究開発と成果の事業化を推進するために産官学の連携でErdmannを中心に進められているRNAnetwork計画はそのひとつと考えられる。

ドイツでは、中央政府ならびに州政府からの研究開発資金が削減(例：教授の給与は10%削減)されており、大学等の研究機関では民間企業からの研究資金の獲得、競争的資金の獲得に努力している。例えば、ベルリン自由大学も president（社会科学系の研究者）やvice-president（生物系の研究者）がErdmannの行動を支援している。（バイオベンチャーにとっても2000年以降、資金の供給先が細ており、大きな投資を受けることができない状況にある。）ベルリン近郊のバイオベンチャーのマネージメントには後述するようにBioTop社が当たっている。

Erdmannの進めるRNAnetwork計画（10年間で6000万ユーロの研究資金）は、中央政府、州政府からそれぞれ1/3の資金援助を受けて1998年以降進められており、すでに事業化の例がある。RNAnetwork計画の事務局機能と研究成果事業化の窓口の一つとしてRNA 社がある。RNA 社の社員25名の内15名はErdmannの研究室の卒業生であり、かつ RNA 社はベルリン自由大学の化学教室から教室の研究室を借りていることからも、ベルリン自由大学との関係の深さがうかがえる。

フンボルト大学の医学部と大学病院が合体した組織、Charite は教育、基礎研究、トランスレーションリサーチ、臨床を行うヨーロッパ最大の「病院組織」といえる。CEO のGantenは、Erdmannの友人であり、Chariteにおいて事業化を強く意識した運営を行っている。ChariteがncRNA 研究の臨床応用の拠点になる可能性は高く、ベルリン地区のncRNA研究事業化の鍵を握っていると考えられる。

全般的には、リポザイムやアブタマー、RNAi の事業化へ向けた動きは大学等からの技術移転を受けてベンチャーでなされており、成果が出つつある段階といえる。その意味では、ncRNA研究の事業化ポテンシャルは感じられた。
7.5.2 RNA network の代表的な参加者

7.5.2.1 Erdmann, Professor of Freie Univeritat (Free University), Berlin

Erdmann は RNA 分子、特にリボソーム RNA の配列・構造決定の開拓者として知られている。現在は長年培われてきた RNA 技術と、最新のテクノロジーを駆使して、医療やバイオテクノロジーに応用するために研究を行っている。具体的な技術として、

1. protein bioreactor
2. antisense- and ribozyme-strategies
3. high-affinity RNA molecules (aptamers and spiegelmers)
4. in vitro selection of artificial ribozymes
5. chemical synthesis of nucleic acids
6. crystallization of RNA-molecules
7. matrix-technology

の項目をあげている。これらの研究を推進していく上で、"Network of RNA technologies in Berlin" を構築し、Freie University (Freie Univ.) 内だけでなく、他の研究所や企業とも連携して、研究内容の向上とその事業化に向けた努力を続けている（後述の RiNA の項参照）。もちろん、Freie Univ. や Univ. Humboldt の医学部とも統合された Charite においても、RNA 創薬の過程でのコラボレーションを実現しようとしている。これには、Freie Univ. が American donation of cancer research (NFCR) と共同で "Cancer research center in Berlin" を設立し、そのセンター長に Erdmann が就任したことも大きく関与していると思われる。

また、Erdmann の研究上特筆すべき点として、RNA の結晶化の方法論として、世界で初めて RNA 分子の宇宙（無重力下）での結晶化を成功させ、その構造解析を精力的に進めている。これは基礎研究のみならず、どのように RNA アプタマーが働いているのかを理解することで、製薬に向けたドラッグデザインの大きな指標となり得る。

図 7.5.1 リボソーム RNA (5s rRNA) の結晶と、RNA の立体構造図

113
7.5.2.2 RINA GmbH/RNA network

RINA 社は Erdmann が head of Board を勤める私企業である。その目的は 2 つあり、ベルリン地区の RNA 研究を統括して資金の流れを機能的にコントロールし、更に研究成果の評価を行うというマネージメント（RNA network）、およびそれらの研究成果の市場へ還元である。RINA の組織としてもこの 2 つの目的を果たすことができるように、管理部門と研究部門に分かれている。管理部門では下に示す RNA network の運営を行い、研究部門では、in vitro タンパク質合成キットを開発し、QIAGEN 社を通じて販売を行っている。

これら 2 つの部門は一見別個の組織であるように見えるが、研究資金を調達して研究を促進し、その成果を市場経済の中で換金して研究資金に戻す、というサイクルを潤滑に運営するためのユニークな構造といえる。

** Company Profile

- 社名 RINA GmbH
- 創業 1988 年
- 住所 Takustrasse 3, 13195 Berlin, Germany
- CEO L.W.Triman
- Board Erdmann, Eckstein, Riesner, Spinzel

** RNA network

ベルリンおよびその近郊地区の RNA に関する研究を行っている大学、公的研究所、私企業を結ぶ機関、RINA 社によって運営されている。参加大学は Freie Univ.、Charite、Univ. Hamburg など、研究機関としては Max-Planck 研究所、MDC、DRFZ など、私企業では QIAGEN、Shering、Sanofi-Aventis といった大企業のほかにベルリン周辺のバイオクラスターに属するベンチャー企業が多数参加している。

資金源は公的資金 60%、企業出資 40%である。公的資金はベルリン市および連邦文部省、European regional development fund から年間 21.7 百万ユーロが提供される。これらの資金をもとに、2004 年から 2007 年にかけて 17 のプロジェクトが実行されている。研究内容は RNA 合成、リボサインおよびアンチセンス、アプタマー、Spiegelmer（Noxxon 社の項を参照）、無細胞タンパク質合成など多岐にわたる。プロジェクトは参加団体から多数候補が応募され、選考が行われる。またこれらのプロジェクトの評価も RINA において行われるが、評価には Erdmann 他の学識者による board によるものののみならず、参加各団体の互換というユニークな仕組みが採用されている。

多くの団体、企業が RNA network へ参加している理由は、その研究推進の仕組みにある。ベルリン市は企業の振興による市財政への貢献および雇用の促進を期待している。ドイツは連邦国家であり、ベルリンにはドイツのバイオクラスターとしてバイオ産業を振興したいという強い欲求がある（第二のバイオクラスターはミュンヘン-バイエルン州に存在するが、やや規模が小さい。一方の地方はクラスター参加企業数としては更に小規模である）。
ベルリンには長い歴史を誇り、バイオ研究にも強い西独由来の Freie Univ.、東独由来の Humboldt Univ.があり、また Humboldt Univ.の医学部と大学病院、医学系の研究所が統合された、大学病院としてはヨーロッパ最大のベッド数を誇る組織、Charite が存在する。Charite では積極的な分子生物学に基づいた臨床研究が遂行されている。このような大学および臨床機関が RNA network に積極的に参加していることが、この後の研究発展に重要な意味を持つと考えられる。

しかしながら、研究資金調達という意味ではこの RNA network も苦戦しているようである。ドイツのバイオ産業への国家資金投資は確実に大きくなく、RNA ネットワークにおいても国家資金は個別資金の 30%を占めるのみである。またドイツのバイオ産業に対する投資市場環境も、IT 産業などの渋滞ではないが、好調とは言えない。一方、企業は RNA network の 40%の出資で、研究が採択された場合にはその研究成果の exclusive な権利を world-wide に得られることが大きな魅力である。個々の研究は closed に行われる。研究成果が上市した場合には利益の 5%を RNA ネットワークに還元することが求められる。還元された資金は次のプロジェクト実施のために利用される。研究成果の市場への結びつく例として、RiNA 社が QIAGEN 社（日本では和光純薬が代理店を勤める）を介して販売しているタンパク質 in vitro 合成キットがある。

7.5.2.3 Charite (University hospital)
創業：1710 年
(1818 年より University Hospital となる)
Medical 部門
ベッド数：3,000 (49 clinics)
患者数：125,000 / 年
外来患者数：900,000 / 年
＜ヨーロッパ最大の大学病院＞
Institute 部門
研究費：>1 億ユーロ / 年
研究者数：4,000
研究テーマ：2,500
特許：280 (103: Charite 独自、177: Freie Univ. と共同)
Ganten は Medical 部門と Institute 部門を統合する立場にある CEO である。また医科大学、歯科大学として教育にも非常に重点を置いている。Molecular medicine 研究を推進しており、その過程で Erdmann の RNA network と共同研究を行うことにより、より現実的に、かつ利益を得られプロジェクトを立案中（進行中）である。

1710 The “Pest House” is constructed
1727 A new floor is added during conversion to a hospital.
1785-1797 The “Pest House” is torn down and replaced by a new late-baroque building with three wings (Old Charité)
1831–1836 The “New Charité” is built with departments for mental illness, syphilis, and a prisoners’ ward.
1830 The first German pediatric hospital is built.
1832 A nursing school is established.
1836 The smallest facility with isolation ward is built, with an obstetrics ward and midwife school added in 1866.
1856 The first pathology department is established.
1896–1917 Nearly all the old buildings are torn down, and the Charité is rebuilt in red brick.
1912 The Berlin Institute of Dentistry (Dental Clinic) is built on Invalidenstrasse.
1945 The Charité is rebuilt after 20% of the buildings are completely destroyed, 40% seriously damaged, and 30% slightly damaged.
1959 A new tumor clinic is built.
1960 A dermatology clinic is built.
1982 A high-rise is built for surgical clinics and patient treatment wing, as well as the Central Polyclinic.
1995 Renovation begins on the Internal Medicine Clinics I and II.
2000 A new building is constructed on the Charité grounds for the Max Planck Institute of Infection Biology and the German Rheumatology Research Center.
病院と研究機関という2つの面を利用し、病気という現象を治療研究という側面と、病気の原因を特定する生命科学的研究の側面から、患者（疾病）のデータベースを構築しようとしている。これはRNA創薬のような分子レベルから疾患の原因と考えられる遺伝子を制御して、最終的に表現系を元に戻すことを目的とした研究に、非常に重要であると考えられる。

図 7.5.2.2 Berlin 市内での、Charite (7, 13, 25)、Freie Univ. (12) 等の概観図

7.5.2.4 Biotop, Berlin-Brandenbrug

BioTop 社はベルリン・ブランドenburg州におけるバイオクラスター・ネットワークの代表の役割を担う企業である。ベンチャー企業化や継続のコンサルティング、Biotech Reportの発行などの公報事業、クラスター内の企業・研究所間のコーディネートなどの企画を行っている。

ベルリン・ブランドenburg州においては、バイオ関連事業に対し、現在までに10億ユーロが投入されてきたと計算される。うち、ベンチャーキャピタルの投資額は5億ユーロである。内訳は基礎ゲノミクス研究に5000万ユーロ、バイオインフォマティクスに7000万ユーロ、バイオハイブリッド研究に1000万ユーロ以上、タンパク質構造解析に1800万ユーロ、RNA研究に3000万ユーロ以上、再生医療研究に1800万ユーロとなる。

しかしながら、現在のバイオ研究の資金環境はよいと言える状況ではない。2003年のベンチャーキャピタルの投資額は4500万ユーロであり、前年比80%増であるが、2001年の実績から比べると1/3に落ち込んでいる。またバイオ研究への国家予算の割り当ては削減された。しかしながら、このような資金面の縮小はバイオベンチャーの研究に消極的な影響をおよぼすのではなかろうかという疑問も残されている。
を及ぼしてはいないとのことである。
ベルリン市周辺には7つのバイオパークが存在し、総面積は110,000㎡に及ぶ。これら
のパークは大学または公的研究機関に隣接する地所または大手製薬企業の敷地内などに設
けられ、各社間の連携のみならず、臨床試験の実施などを円滑に行うためにも都合がよい
立地条件となっている。現在、ベルリン近郊のバイオ関連企業165社の60％がこれらのパ
ーク内に存在する。ベルリン-ブランドンブルク州におけるこれらの企業の雇用は3,000名
以上におよび、地域振興にも大きな貢献をしている。
またこれらの企業のほとんどは医薬医療へのバイオテクノロジーの応用を目指しており、
年々臨床試験、臨床試験の件数も増加の傾向にあり、2003年には前臨床試験31例、第
一相試験8例、第2、3相試験13例となっている。
2005、2006年はドイツ連邦政府によって「日本におけるドイツ年」と位置付けられており、
科学面での交流行事もいろいろと予定されているが、これを機会に日本の研究機関、
企業とベルリン近郊のバイオパークとの交流も積極的に進めたいとの提案もあった。

7.5.2.5 Noxxon Pharma AG
Noxxon社はRNAnetworkの支援を受けて、独自技術の市場化を目指しているバイオペ
ンチャーのひとつである。彼らは独自にRNAアプタマー技術：Spiegelmersを確立した。
具体的にはアプタマーに鏡像構造（D-RNAに対するL-RNA）を採用することで、生体内
での分解を逃れ、かつ副作用も起きにくい、非常に効果的なRNA製剤の開発に成功してい
る。具体的には図7.5.2.3に示すように、ある標的ペプチド（自然界ではL型）が存在した
場合に、それとまったく同じアミノ酸配列であるが鏡像関係にあるD型で合成をする。そ
のD型ペプチドに対して結合するようなRNA分子を、通常にRNA合成（D型）した25mer
のランダムな部分を含む配列の中から数回に渡る選択サイクル（SELEX法）を経て単離
する（おそらく数種類が含まれているものと考えられる）。その配列を元に鏡像関係にあた
るL型RNAを合成すると、初めの標的ペプチド（L型）に対して親和性の高い分子ができ
ているはずである。
図 7.5.2.3 類像関係を利用した結合 RNA を進化させる方法論

ただし鏡像関係の間で全く同じとは行かない可能性や、糖鎖などの修飾により特異性が変化したりする可能性があるため、少し手を加えている。具体的にはこの L 型 RNA に対して少し配列を変異したり (あるいはいくつかの基補から最適なものを試したり) 更にコストの面からも最適な長さを探して、効果の高い分子を選ぶ作業を行っている。

Ghrelin というペプチド（成長因子分泌促進受容体の活性化をする）に対して結合する RNA 分子を作製することで、肥満の治療を目的とした実際の事例を示す。

図 7.5.2.4 Ghrelin のアミノ酸配列

図 7.5.2.5 Ghrelin に対する L-RNA Spiegelmer の作用効率
図 7.5.2.6 ラットでの濃度依存の効果

心臓疾患などの治療を目的として Vasopressin をターゲットにした Spiegelmer の開発でもほぼ同じような効果を示す分子が開発済みとのことである。

L 型 RNA の特徴は、生体内に存在しないために分解経路も存在せず非常に安定であるばかりでなく、細胞の中に入った際に生体内の DNA、RNA 分子とは例え相補的な配列を持っていたとしても対を作ることはできず、RNAi 効果や本来の効果の減少、副作用といった意図しない（できない）現象を未然に防ぐことが可能である。現在までの動物実験ではそのような副作用、あるいは免疫作用などは全く観察されていない。

図 7.5.2.7 自然界に存在する D-RNA (aptamer) と存在しない L-RNA (Spiegelmer) における分解速度の比較。ヒト血清培地中での経時変化を示す。

この技術を用いた製品は既に老化による失明の治療用に販売されている (Eyetech / Pfizer)。L-RNA の合成系の確立と規模拡大により、合成量 100 g まで対応できる。更に多くの疾病用の製剤開発も進んでおり、彼らによれば世界中に 340 のパートナーが存在し、
精力的に開発を進行中である。なお、Erdmann は Noxxon 社 Scientific advisory board の一人である。

図 7.5.2.8 Berlin 市内での Noxxon 社（中央）、Atugen 社（右上、次項参照）の概観図

7.5.2.6 Atugen.

Atugen 社も RNA network の支援を受けて、独自技術の市場化を目指しているバイオベンチャーである。彼らが支援を受け始めたのは 2004 年冬であることであり、ネットワーク参加企業としては最も新しい社のひとつである。
創業：1998 年、Berlin。
従業員数：37
事業の焦点：siRNA を用いた創薬を新たな次元まで引き上げることを目的とする。
新規開発品：age-related macular degeneration (AMD) 治療用 siRNA（共同開発）、2005 年末までにフェーズ I 臨床試験を開始する予定。
進行癌の治療を目的とした転写開始因子阻害 siRNA、2006 年中にフェーズ I 臨床試験を開始する予定。
それ以外にも数種類の siRNA 治療薬候補を 2007 年中にフェーズ I 臨床試験開始予定。
パートナー：Sanofi-Aventis、US biotech。
技術（製品）：atuRNAi:治療用に開発された安定な合成 RNA。
atuPLEX:リポソームによるsiRNA のデリバリーシステム
GeneBloc: siRNA のターゲットを検証するための antisense RNA 分子設計。

RNAl 製薬に特化し、製薬のターゲットとなる遺伝子の探索を動物モデル(Oncology disease model、metabolic disease model) を用いて探索している。発現量比較による Gene discovery から遺伝子パスウェイ解析を通じて、ターゲットになる遺伝子の特定から研究を行っている。
彼らは既に独自の修飾により効果期間の長い RNAi 技術を確立し、確証用の antisense RNA 設計技術を持ち、更にデリバリーキットも販売している（下図参照）。

図 7.5.2.9 パイプライン図

図 7.5.2.10 製品 atuRNAi の模式図
彼らも siRNA や antisense RNA 創薬における off-target 効果を防ぐことの重要性は認識している。しかし、現在までに開発されているツール（アルゴリズム）では、基本的に off-target 効果を予測することはできず、経験則や実証実験により確認するしかない。彼らはこの状態を補うため、siRNA で確認できた抑制効果を antisense RNA でも検証し、どちらでも選択可能な状況を作ることで、生体で使用できる可能性を少しでも上げる努力をしている。

2004 年は彼らにとって事業の節目が相次いだ 1 年であり、それを元に 2005 年から RNA のメンバーとなりファンドを得るとともに（正確には 2004 年末にメンバーになったが、ファンドの供給は開始されていないようである）、それ以外の新薬の開発と製品化に向けた臨床試験へのコラボレーションのチャンスを探っている。

7.5.2.7 Lohrach, Max-Planck-Institute, Moleculare Genetik

ゲノムプロジェクトの成果を利用し、またマイクロアレイ実験を駆使して、遺伝子の制御ネットワークの構築を行っている。またマイクロアレイの可能性を模索しており、DNA SNIP タイピング（マススペクトロメトリーでも行っている）、ncRNA、シーケンス（SBH: sequence by hybridization）のタップチップなど多様に試みているようである。これらの目的を達成するためのマイクロアレイの製造に関しては、非常に小さな well の中にプローブをスポットする技術を確立しており、高密度化に対応している。それはまた、well 中での非常に少量（1–10 nL）の溶液反応に使用することができるため、例えば TaqMan assay のような反応を、非常に少量であるとたくさんのサンプルを一度に解析する、ハイスクールプット実験系を構築することができる。彼らもまた Erdmann と共同でシーケンスを目的とした DNA マイクロアレイを作製することで、ゲノムや DNA 断片の塩基配列決定用ツール（SNP にも応用可）の開発を目指している。ただし、これを利用して RNA 分子の配列決定に使用するかどうかは不明である。
8. ncRNA 検出技術のフィージビリティスタディ

8.1 検出技術・方式

本報告書において何度も記載されているが、機能性 RNA の中でも近年最も注目されている microRNA（miRNA）は短鎖 RNA のため、その発現解析に際しては種々の課題が存在することが予想される。そこで、Stanford 型の標準的なマイクロアレイ解析技術に準じて miRNA microarray を作製し、ヒト子宮頸癌株 Hela 細胞由来短鎖 RNA を用いて発現解析を行うこととした。

8.1.1 フィージビリティスタディの概要

ヒト子宮頸癌株 Hela 細胞由来短鎖 RNA を用いた発現解析のスキームとしては、従来技術がどの程度まで対応できるかといった視点で行う。すなわち、mRNA 発現解析と同じスキームを本フィージビリティスタディでは取る。図 8.1.1 に概要を示す。

図 8.1.1 短鎖 RNA 抽出からハイブリ検出のスキーム

培養ヒト子宮頸癌株 Hela 細胞から定法に従いトータル RNA を抽出する。以下に、miRNA 前駆体として報告されている miR-22 を対象に基本概念を説明する。miRNA 前駆体予測配列は、stem-loop 構造をとるためターゲットとのハイブリダイゼーションは困難であることが予想される。そのため前駆体配列の前後領域から 60mer オリゴプローブ配列を造成し、前駆体が検出できるか否かを検討する。図 8.1.2 参照。
predicted precorur of miR-22

| GTGCA | GCGAGGAACT | GACAGGGAATA GCCGCTGGA TGGCTGGA AGCGGGCTGGA ATGATACGGTT |
|-------|------------|-----------------------------|---|
| GGGACGCCGAC GCAGTGATTG GCTCCCTCTC GTGCAGCAAC CCCACACCCG |
| AGCACCAGGC CCCCCAGACTCTCTTCAT GTTAAGACCT GGGACACCC |
| TCAGCTGGGCT TGGTCACTGA AACTCTACGTCCTGACCTGA |
| CCTCTCAGGC CTCCTACCTGG CTGAGCGGCA GTGTTTCTTC ATGGCAGC |
| TTTATGTCCT GACCCAGCCTA AAGCTGCGGAC TGGAGAACCT GTTCCTCCTC |
| GCCCTGGGCT TGAGGGAGGA GGAGAGCTG CATTCCCCAT CATCTGGAG |
| GTGACAGAAAA TGGCTGGGAT CAGCCGAAC AGCAGGGCTGGA ATGATACGGTT |
| TGGGCAAGT TGGAGCGCTT TGCCCGAGT |

図 8.1.2 miRNA 前駆体検出用オリゴプローブの予測位置

培養ヒト子宮頚癌株 HeLa 細胞からの抽出された標的短鎖 RNA は逆転写反応後、蛻光標識を行う。蛻光標識方法は、ランダムプライマーと Cy-dUTP を組み合わせた方法とダイレクト標識方式を検討する。図 8.1.3 に蛻光標識のスキームを図示した。

逆転写反応を利用した蛻光ラベル法

1. 逆転写反応
2. ランダムプライマー処理
3. ダイレクト蛻光ラベル法

図 8.1.3 短鎖 RNA 標識のスキーム
本フィージビリティスタディではターゲット miRNA 以外の RNA による非特異反応を防ぐためフィルトレーションによって 22mer 前後の miRNA 分画を抽出する計画である。予備検討によればトータル RNA からアクリルアミドゲルによって切り出される短鎖 RNA 量が約 1 万分の 1 程度となることが判明している。そのため、マイクロアレイ検出感度を向上させる必要がある。そのため、図 8.1.3 の標識法とは別にシグナル増幅についても将来的には検討したい。シグナル増幅法としては、biotin 標識ターゲットに抗 biotin 抗体、streptavidin-Phycoerythrin(SAPE)を組み合わせた方式である。図 8.1.4 参照。

図 8.1.4 シグナル増幅法の概念図

短鎖 RNA 検出用マイクロアレイを試作するため、TaKaRa-Hubble slide Glass(Hubble slide) を用いる。Hubble slide は合成オリゴプローブを特異的・効率的に固相化できる特徴を有している。他のマイクロアレイ用スライドガラスとの比較を図 8.1.5 に示した。
8.1.2 ターゲット RNA の選択と検出用合成オリゴプローブ設計
miRNA microarray の搭載 miRNA として、has-let-7b、has-miR-100、has-miR-125b、has-miR-30d の 4 種類を対象とした。これらは、HeLa 細胞で比較的発現が高いと報告されていること、Tm 値が 53 ～ 55 で似かよっていることから選択した。

<table>
<thead>
<tr>
<th>配列コード</th>
<th>配列コード</th>
<th>配列コード</th>
<th>配列コード</th>
<th>配列コード</th>
<th>配列コード</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

表 8.1.1 miRNA マイクロアレイ搭載の miRNA 配列

いずれも 22mer であるため、microarray 搭載 probe としては相補配列を有する 22mer オリゴ DNA が考えられるが、このような短いオリゴプローブとのハイブリダイゼーション効率が悪く検出が困難であると予想された。そこで、miRNA 配列をタンデムに連結した 60mer としたプローブ、ヒトに対して類似性の低い付加配列を 3 端、もしくは 5 端に付加した 60mer プローブ、予測前駆体 pre-miRNA 配列に対応する 60mer プローブそれぞれ 4 種類搭載することとした。

ヒトに対して類似性の低い付加配列はタプル法（(株)パパスジェン社方式）を用いて設計
した。タブル法による設計方式について説明する。
DNA マイクロアレイ用オリゴプローブの設計においては、以下の基準を満たす必要がある。
・ プローブの塩基配列の相補配列が標的核酸断片に特異的な塩基配列であること。
・ プローブの Tm すなわち、プローブとその標的核酸断片が形成するミスマッチのないハイブリッド 2 重鎖の融解点温度が均一であること。
・ プローブがハイブリダイゼーションを阻害する安定な 2 次構造形成しないこと。

【タブル法の原理と特徴】
オリゴプローブ設計法としては種々の方法が開発されているが、タブル法は特異的 DNA 断片の絞り込みとハミング距離計算によるクロスハイブリダイゼーションの可能性の評価を行うことを特徴としている。
一般的に利用されている BLAST 法との違いは、BLAST 法が固定長の塩基配列 (ワード) をもとに背景配列上の類似領域（1 つのワードだけではない）を探し、そこから背景配列の両側に伸長させて、クロスハイブリダイゼーションの可能性の高い領域（相対性領域）の抽出を行っている。したがって、BLAST 法では必ずしもプローブ候補配列全体の特異性を評価しているとは限らない。それに対して、タブル法は常にプローブ候補配列全体の特異性の評価を行うことが特徴となっている。
具体的な例を示す。例えば、Accession No. AF286725 のオリゴプローブ配列 (46mer) は、
ATGCCACAAAGTCACAGAAACCCACGAGTCCTTCGCTGTTGCCCCCTT である。この時のタブル法による最終評価結果は 46mer 全体に対して、17 (ハミング距離) というスコアが得られる。一方、BLAST 法では図 8.1.6 に示すように候補配列全長が 46mer であるにもかかわらず、1 部分 (16mer) のみの評価となっている。配列全体の評価になっていないことに注意すべきである。

Score = 32.2 bits (16), Expect = 0.16
Identities = 16/16 (100%)
Strand = Plus / Plus
Query: 3 gccacaagtacagaa 18

図 8.1.6 BLAST による相対性検索結果
【特異性の評価】

ハミング距離の違いによる特異性の評価を行った。22mer の標的核酸配列に対して、ハミング距離の異なる 2 つのプローブ候補配列を求めた。ハミング距離はそれぞれ 0 と 14 です。ハミング距離が 0 のプローブ候補配列は標的核酸配列の相補配列である。それに対して、ハミング距離 14 のプローブ候補配列である。図 8.1.7 は DNA ハイブリッドの融解点温度をインターアレーター（SyberGreen）を用いて計測したものである。図 8.1.7 で示すように、標的核酸配列の相補配列（ハミング距離が 0）は安定な 2 重錠を形成しているため融解点温度が測定されている。一方、ハミング距離が 14 のプローブ候補配列は標的核酸配列に対して、2 重錠を形成していないため融解点温度曲線が得られていない。つまり、背景配列全体に対して大きなハミング距離をもつプローブ候補配列は自分自身と相補的な配列以外とは安定な 2 重錠をもたないことを示している。

図 8.1.7 融解温度曲線

以上の原理に基づいて、仮想的な標的配列を予め作成した後タプル法で特異性評価を行い付加配列を決定した。図 8.1.8 にタプル法により設計された合成オリゴプローブを用いた DNA マイクロアレイの例を示した。

図 8.1.8 タプル法設計による DNA マイクロアレイ
miRNAの標識手法に応じて sense鎖, anti-sense鎖いずれの標識ターゲットの検討にも対応できるようプローブも両鎖用意し、4遺伝子8種類計32種類とした。更に、モデル実験用として、2種のmiRNA様オリゴRNAに対応するタンデム連結60merプローブ2本、及び38merのpositive control, negative control用プローブを搭載した（表8.1.2参照）。各プローブは、共有結合型スライドTaKara Hubble slideにtripleでスポットリングを行い、DNAマイクロアレイを作製した。図8.1.9参照
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>その他</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>その他</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>その他</td>
<td></td>
</tr>
</tbody>
</table>

表 8.1.2

プローブの配置図

図 8.1.9 試作 miRNA 検出用マイクロアレイフォーマット
8.2 試作と結果

予めハイプリダイゼーション及び洗浄条件を設定するためと従来法でのおおよその検出感度を推定するためのモデル系を構築して評価を行った。

8.2.1 モデル実験用合成オリゴ RNA 配列
モデル RNA 配列は表 8.2.1 の通りである。

<table>
<thead>
<tr>
<th>配列名</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>let-7b PM</td>
<td>UGAGGUAGUAGGUUGUGGUU</td>
</tr>
<tr>
<td>let-7b MM</td>
<td>UGAGGUAGUAGGUUGGUU</td>
</tr>
<tr>
<td>miR-100 PM</td>
<td>AACCGUAGAUCCGAAUCUUUG</td>
</tr>
<tr>
<td>miR-100 MM</td>
<td>AACCGUAGAUGCGAACUUUG</td>
</tr>
</tbody>
</table>

表 8.2.1 モデル合成オリゴ RNA 配列

miRNA を市販の蛍光ラベリングキットを用いて直接標識した場合の標識効率や細胞抽出液にコントロール RNA を添加して、短鎖 RNA の回収効率を評価するためのコントロール RNA を作製した。合成オリゴ RNA 配列は表 8.2.2 の通りである。

<table>
<thead>
<tr>
<th>配列名</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>No3-RNA</td>
<td>AAGACCACACAUUCUGACCUC</td>
</tr>
<tr>
<td>No4-RNA</td>
<td>CCUCCAUUACUUAUGCAAGCC</td>
</tr>
</tbody>
</table>

表 8.2.2 コントロール用合成オリゴ RNA 配列

8.2.2 モデル実験結果
let-7b PM および let-7b MM を、LabelIT Cy3 Labeling Kit（Mirus 社製、タカラバイオ販売）を用いて直接 Cy3 標識を行った。標識後の Cy3-lct-7b 1ng 相当量をハイプリバッファー（6XSSC, 0.2%SDS, 5XDenhardt’s, 0.1 mg/ml denatured Salmon sperm DNA + Formamide 添加 or 非添加）に添加、TaKaRa Hybridization Chamber（タカラバイオ）を用いてハイプリダイゼーションを行った。ハイプリダイゼーション条件は、37℃または42℃、Formamide 0%, 25%または50%添加の条件を組み合わせて行った。その後ハイプリダイゼーションと同一温度の 37℃または42℃で 3 回洗浄（洗浄 buffer:2XSSC/0.2%SDS）し、最後 0.05XSSC でリーンして遠心乾燥した。

DNA チップ解析装置 Affymetrix 428 Array Scanner (Affymetrix 社)にて画像を同一感
ハイブリダイゼーション温度が42℃でもFormamide無添加の場合、let-7bのPMとMMでシグナル強度に差がないばかりか、目的外のスポットにシグナルが観察されるクロスハイブリが見られた（Data not shown）。42℃でFormamide50%添加した場合、図8.2.1のようにlet-7bのMMはPMに比べ、1塩基の違いでシグナル強度が有意に低下した。

シグナルが検出されたprobe Noを右図丸印で示す

図8.2.1 Cy3標識let-7b PMおよびMMを添加時のハイブリ画像

ターゲットがhas-let-7b sense鎖であるため、has-let-7b anti-sense鎖probeにシグナルが検出されることが期待された。図8.2.1から明らかにようにシグナル検出されたものは、期待通りhas-let-7b anti-sense鎖probeの4種のみであり、目的外probeにはクロスハイブリしていない。

そのシグナル強度を以下に示す。
表8.2.3 Cy3標識let-7b PMまたはMMを添加時のハイブリダログナル

いずれのprobeにおいてもlet-7bの中央に1塩基ミスマッチを導入すること（すなわちlet-7b MM）で、シグナル強度が1/10以下に低下した。
したがって、今後Formamide50%存在下、42℃ハイブリダイゼーション、42℃洗浄を行うこととする。
また、miRNA配列を3′端に配置、もしくは5′端に配置してもシグナルには大きな差が見られず、miRNA配列を並列に3個並べたtriplet probeが最も強いシグナルを示すことが明らかとなった。
次に検出感度を調べるため、単離したCy3標識let-7b PMを順次希釈し、10pg, 1pg相当量を用いて上記条件下ハイブリダイゼーションを行った。図8.2.2にハイブリ画像を示すように、1pgでも充分検出された。更に、triplex type probeの平均シグナル強度が2000以上であることから、より少ない量でも検出可能と考えられた。従って、miRNA targetの検出感度は、probe配列中に複数のmiRNA配列を並列に並べたarrayを用いた場合、通常のmRNA検出の場合と大差はないことが明らかとなった。

<table>
<thead>
<tr>
<th>探触</th>
<th>探触</th>
<th>探触</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>g</td>
<td>h</td>
<td>i</td>
</tr>
<tr>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
<tr>
<td>m</td>
<td>n</td>
<td>o</td>
</tr>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
</tr>
</tbody>
</table>

133
図 8.2.2 Cy3標識let-7b PM添加量と検出シグナル

予備的実験において、let-7b PM と miR 100 PM は、同一量を LabelIT Cy3 Labeling Kit を用いて蛍光標識した場合、取り込まれた Cy3 の量にかなり差が見られた。LabelIT Cy3 Labeling Kit の原理は、蛍光色素をグアニン塩基に直接共有結合させるものであるため、取り込み率が配列中のグアニン塩基数に依存することは当然のことであるが、周辺配列より大きく影響を受ける可能性もあり、今後の検討課題である。

8.2.3 ヒト培養細胞からの miRNA 検出

miRNA 検出用マイクロアレイによる評価の流れを図 8.2.3 に示す。
まず、Cy3標識 No4-RNA を total RNA に添加し、フィルター分画で短鎖 RNA 画分を
単離した場合の、回収率を求めた。すなわち、ヒト培養細胞由来 total RNA 500μg
に No4-RNA を 10ng 添加し、まず Microcon YM - 30(Millipore 社)で 12,000rpm, 15 分遠心
分離にて、素通り画分を収集した。素通り画分を次に Microcon YM - 3(Millipore 社)にア
プライし、12,500rpm, 100 分遠心分離し、短鎖 RNA 画分である上層を回収した。上層の
Cy3 シグナル強度の計測より、25%の回収率であることが確認された。フィルター分画法
は簡便であるが、フィルターの目詰まりが起こりやすく回収率の低下が心配され、かつエ
タノール沈殿時のかずを懸念されていたが、極度に回収率が低いわけではないことが明ら
かとなった。

一方、尿素変成ポリアクリルアミドゲルより 22mer 前後の短鎖 RNA を切り出し回収す
る方法では、1mg の total RNA より約 30ng 回収された。

そこで、ゲルからの切り出し回収効率を求めるため、15%ポリアクリルアミドゲル (サ
ンプルアプライ部約 8cm×13cm, 2mm 厚) に、Cy3 標識 No4-RNA 1.45μg 添加した total
RNA 1500μg をアプライし、1XTBE パッファー中で 500V, 30mA で電気泳動した。図 8.2.4
に Hela 細胞由来短鎖 RNA 回収時の電気泳動画像を示す。電気泳動用色素プロムフェノールブルー（BPB）がゲル先端から 1/3 程度のところに来るまで泳動し、22mer である No4-RNA を指標としてキシレンシアノール（XC）下部から BPB 上部を切り出し、短鎖 RNA 画分を回収した。

図 8.2.4 Hela 細胞 total RNA(Cy3 標識 No4-RNA 添加)より短鎖 RNA の切り出し

ゲル切り出し前後の Cy3 の回収率を吸光度より求めたところ、約 50% の回収率であった。次に、回収された短鎖 RNA 画分の 2/5、すなわち Hela total RNA 600 µg 由来短鎖 RNA を用い LabelIT Cy3 Labeling Kit にて Cy3 標識した。ポジティブコントロール検出用として Cy5 標識 No1 オリゴ DNA を混合し、Formamide50% 共存下、42℃ ハイブリダイゼーション、42℃ 洗浄を行った。その結果、let-7b, mir-100, miR-125b, miR-30d の antisense probe に対応するスポットすべてにシグナルが検出され、一方 sense probe には全くシグナルが検出されなかった（図 8.2.5, 図 8.2.6 参照）。
図 8.2.5 HeLa 細胞由来短鎖 RNA を用いた miRNA の検出 1（Cy3, Cy5 重ね合わせ画像）
それぞれの probe type について比較した結果（図 8.2.6）第 8.2.2 章で行ったモデル実験の場合と同じ、let-7b, mir-100, miR-125b の 3遺伝子については triplex type のシグナル強度が最も高かった。しかし、miR-30d に関しては、precursor type のシグナルが triplex type に比べ 4 倍以上高い結果となった。今後、原因追求していく必要がある。

8.3 マイクロアレイ技術の可能性

今回、ヒト培養細胞由来 total RNA から単離した短鎖 RNA 画分から、既存手法を応用した Stanford 型 miRNA microarray 解析による miRNA 遺伝子の検出が可能であることが明らかとなった。現在研究が盛んなトランスクリプトーム解析において最も汎用性のある mRNA の網羅的発現解析技術であるマイクロアレイ解析技術が、miRNA 発現解析に応用可能であることが示された意義は大きい。しかし、大量の total RNA から単離した短鎖 RNA を用いており、汎用性のある方法とはいえ難しい。

今後解決すべき問題点として、もっとも大きな課題は短鎖 RNA の高効率標識法の開発が
あげられる。今回用いた miRNA の標識法は、化学修飾による RNA の直接標識法であり、
22mer 前後の miRNA 配列中にグアニン塩基を有していることが必須であるため、標識され
れないかまたは標識効率が悪い miRNA が存在する。更に RNA の二次構造の影響により、
グアニン塩基を有しているにもかかわらず標識効率が非常に低くなる miRNA が存在する
ことも予想される。化学修飾法以外の別の方法として、アダプターライゲーションにより
T7 promoter 配列や、RT-PCR 用 primer 配列を付加する手法が行われているが、1本鎖 RNA
のライゲーション効率は非常に低いことが知られており、より高感度検出法とするために
は改良の余地がある。

次に、機能を有する成熟型と機能未知の前駆体の分別定量も大きな課題である。22mer
前後の成熟型と 70mer 以上の前駆体では、特異性の高い至適ハイブリダイゼーション条件
が異なることから、今回のように成熟型と前駆体型に親和性が異なるいくつかの種類の
probe を一緒に搭載したマイクロアレイを用いれば、大まかな量比をつかむ事は可能である。
しかし、本法の適用は RNA 増幅を伴わない末端標識法に限定されると考えられ、高感度化
という点では克服すべき課題は大きい。
9. 調査研究の今後の課題及び展開

1980年代始めの米国の報告書（「遺伝子工学の現状と未来（1981）、バイオテクノロジーオの開発戦略・国際比較（1984）」）において、わが国のバイオテクノロジー産業は2つの理由から米国にとって最も有力な競争相手として位置付けられていた。第1に、日本は伝統的な発酵技術などオールドバイオロジーの工業プラントや技術者を保有し、技術面で確立されていた。第2に、日本政府がバイオテクノロジーを将来のキーテクノロジーとしてその産業化を推進する政策（通産省（現経済産業省）次世代産業基盤技術研究開発制度）を打ち出していたことがあげられる。

しかし、90年代、わが国のバイオに対する評価は「生命科学分野において何ら脅威ではない、プレーヤーでしかない」（「アメリカにおける医学生命科学研究開発政策と日本の課題報告書」の有識者ピアリング、医療経済研究機構1996年）との大きく評価が変わってきた。90年代に入り、基礎研究の発展によりその応用範囲が医療・健康なども含むライフサイエンスにまで広がり、競争力の重点分野が移り変われたと考えられる。90年代の日本においては、基礎研究のステージは終了したとの認識から、産業化を急ぐと共に日本の得意分野とする「物づくり」に傾注したために、いつの間にか基盤情報収集、バイオテクノジー知的基盤、人材育成といったインフラ整備に大きく出遅れてしまった。

結果として現在のわが国のバイオ産業は、次代のリーディング産業として早くからその育成に注力していた米国に比して特許、知的基盤、人材、研究開発費、ベンチャー創出環境などの点で遅れを取っていることは否めない（バイオ産業技術戦略（1999））。

わが国が本格的にバイオ政策に着手したのは、1999年〜2000年頃であり、国家戦略としての「バイオテクノジー戦略大綱」も制定が2002年、米国からの指摘を受けてから随分たってからである。図9.1参照。

このような政策によって、バイオテクノロジー関連の特許出願、バイオベンチャーの起業が目に見え増加していることが分る。このような状況にもかかわらず、欧米特に米国との技術力・産業化促進という点ではなかなか満ちきらずむしろ広がっているとの指摘もされている。また、中国やインドなどのアジア地域は近年急速バイオテクノロジーのバイオインフォマティクスの研究を進めており、日本もこれらアジア地域と競合する場面も
多々見られることは周知の通りである。

上記のような環境を踏まえて、すでに研究開発が着手・成果が見られる遺伝子、タンパク質、糖鎖等の生体分子の機能・構造・ネットワーク解析に加えて、新たなポストゲノムの展開として機能性 RNA の解析を行うとともに、それらの研究を強力に推進するためのバイオツールやバイオインフォマティクスの開発、成果を高度に利用するためのデータベース整備や先端技術を応用した高度医療機器開発等により、テクノロジー医療・予防医療・再生医療等の実現や画期的な新薬の開発、医療機器、福祉機器等の開発・実用化を促進するプロジェクトを実施する必要がある。

特に機能性 RNA 研究分野は、RNA 研究を専門とする研究者が多数いる、日本が中心となって進めてきた完全長 cDNA データベース、ヒト完全長 cDNA をアノテーションした H-I Invitational データベースを活用できる、といった優位性を最大限利用する研究・開発体制により推進するべきである。

ライフサイエンス分野の政策の流れ

図 9.1 バイオ産業人会議 HP より引用
9.1 今後の課題

第4章、第5章および第6章において分析されているように、機能性RNA研究領域にはわが国の強みや弱点が見て取れる。弱み、脅威を分析すると、
- miRNA、siRNA関連で重要特許が多く、RNA干涉関連創薬を事業化する場合には多数のライバルが必要になる可能性がある。但し、RNA干涉基本特許には穴も多いため全くの障害ではない。
- 機能性RNAを対象にした日本独自の統合データベースがない。
- 機能性RNAの網羅的解析ツールにおいて日本独自の解析ツールがない。
- 米国においてRNA干涉を利用した医薬の臨床試験が始動している。
- 諸外国において機能性RNAデータベースが拡充。例として、国のNONCODE。
- 諸外国における産業クラスターの成形。例として、フランスのActigics社。等々が考えられる。

9.2 今後の展開

9.2.1 戦略的方針の立案・実施のための環境整備

米国NIHの例を見てもなく、バイオテクノロジーとバイオインフォマティクスを広く見渡した統括的な方針決定がいっそう求められている。わが国ではバイオ分野の研究・産業化の戦略については、政府の総合科学会議やバイオテクノロジー戦略会議を中心とした体制で推進している。機能性RNA研究・開発分野で世界的に優位に立つためには、バイオテクノロジーとバイオインフォマティクスを熟知した統括リーダーの元で、バイオテクノロジーの各分野や政策、研究機関、産業界を有機的に活用できる環境が必要である。

9.2.2 解析ツールについて日本が優位な分野の活用

機能性RNA研究・開発においては、網羅的機能性RNAの探索用ツールや機能解析用ツールが必須になる。探索用ツールにはトランスクリプトーム解析で有効性が証明されているマイクロアレイ技術をncRNA探索ツールへと展開するべきと考えられる。また、プロテオーム解析で利用されている質量分析機はRNA修飾の解析等にも有効であることが示唆されている。これらは、第5.3章にもあるように独創的基礎技術開発が研究機関や民間企業で活発化している状況でもある。

一方、これまでバイオテクノロジーの研究に利用されてきた解析ツールは、研究現場のみならず、臨床現場での利用が想定される。しかし、現在の解析ツールにはまだまだ再現性等が不十分であるなどの課題が存在し更なる高性能化が期待される。また、解析ツールが研究現場で利用可能であっても医療行為、診断行為に関わる臨床現場において即利用が可能かというと甚だ疑問である。人の生命にかかわる臨床現場では更なる高性能化は避け
では通れない。それら解析ツールの高性能化に関わってくることであるが、バイオ関連の標準物質の整備や基準の設定も非常に重要なことであると考えられる。

9.2.3 バイオテクノロジーについて日本が優位な分野の活用
平成14年度の特許出願動向調査で糖鎖、酵素、微生物、バイオ化学品などの分野について日本が強い分野となっている。酵素、微生物、バイオ化学品の分野では、バイオインフォマティクス技術によるシミュレーションを用いた商品化やプロテオーム解析やメタボローム解析を用いてアミノ酸生産の研究を行っている例もある。また、伝統的産業の一つである発酵産業における経験的な技をバイオテクノジー、バイオインフォマティクス技術に活用し、効率的、低コストな生産が図れる可能性がある。
大きな市場になると思われる医療・医薬分野では遅れがちであるが、上述のような日本が強い分野への応用を意識したプロジェクト目標設定が重要である。

9.2.4 バイオインフォマティクスについて日本が優位な分野の活用
バイオインフォマティクスが扱うデータはゲノム、リボスクリオーム、プロテオーム、メタボロームと多様化・複雑化する。これらをコンピュータ上で扱うためのシステムバイオロジー的な発想が必要となるが、この分野はわが国は世界に先駆けて研究が進んでいる分野である。今後のタンパク質プロジェクトの成果や完全長cDNAデータベース、H-Invitationalデータベースとの融合を意識する必要がある。
機能性RNA研究の成果はデータベースに蓄積されることになるが、それらはDNA－RNA－タンパク－細胞といった生物機能に関するデータの一部ではない。上述のように多様化してくるバイオインフォマティクスデータは今後も世界中で拡充・更新される。したがって、今後実施されるプロジェクトにおいては、『成長するデータベース』というコンセプトが重要になる。この成長するデータベースは、今後のバイオテクノロジー研究成果を踏まえて大きくその姿を変えるに違いない。更にこの『成長するデータベース』は、わが国緊急の課題である『幅広い産業分野における新たなビジネスの創出』に必須の産業創成基盤となるものであると予想される。
システム技術開発調査研究 16 - 16

機能性 RNA の産業応用へ向けての基盤研究のための調査研究」報告書

平成17年3月

作成 財団法人 機械システム振興協会
東京都港区三田一丁目4番28号

委託先 社団法人 バイオ産業情報化コンソーシアム
東京都中央区八丁堀二丁目26番9号